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Abstract

In this paper, we investigate the problem of visual information encoding for face
recognition. We consider two models of information encoding based on sparse
coding and vector quantization and compare their performance and computa-
tional complexity. The optimal solution is considered from the point of view of
the best achievable classification accuracy by minimizing the probability of error
under a given class of distortions. The results from the computer simulations con-
firm that our approach achieves similar performance with state-of-the-art sparse
coding based image classification methods but with the considerably lower com-
plexity.

1 Introduction

Visual information classification is of great practical interest in many multimedia and
security applications. Traditionally, human face recognition is considered to be a refer-
ence application for testing different recognition frameworks. The main reasons for the
interest in automatic human face recognition systems are the wide range of real world
practical applications such as identification, verification, posture/gesture recognition,
social network linking and multi-modal interaction.

In the past, Nearest Neighbour (NN) [2] and Nearest Feature Subspace (NFS) [7]
have been used for classification. NN classifies the query image by only using its Nearest
Neighbour. It utilizes the local structure of the training data and is therefore easily
affected by noise. NFS approximates the query image by using all the images belonging
to an identical class, using the linear structure of the data. Class prediction is achieved
by selecting that class of images that minimizes the reconstruction error. NFS might
fail in the case that classes are highly correlated to each other. Certain aspects of
these problems can be overcome by Sparse Representation based Classification (SRC)
[9]. However, on the other hand Qinfeng at al. [8] argue that the lack of sparsity in the
data means that the compressive sensing approach cannot be guaranteed to recover
the exact signal and therefore that sparse approximations may not deliver the desired
robustness and performance. It has also been shown [1] that in some cases, the locality
of the dictionary codewords is more essential than the sparsity. An extension of SRC,
denoted Weighted Sparse Representation based Classification (WSRC) integrates the
locality structure of the data into a sparse representation in a unified formulation.

In the most favourable case, when the training and observation models are known,
one can design an optimal encoding/representation and a classifier that minimizes the
classification error. However, in many applications the training and observation models
are unknown or highly non-stationary and one only has a few training samples. In such
a set-up, the recognition system basically learns the classifier in a ”blind” way using
only the available distorted training samples and expects that the observation model
will exhibit similar behavior to the training model.



Most of the recent classification frameworks mainly rely on the discriminative nature
of the sparse representation to perform classification. Accuracy not withstanding, it
remains an open question whether or not this family of sparse methods attains the best
trade-off for memory and computational complexity.

Therefore, considering the case in which the training and observation models are
unknown, we focus on the problem of visual information encoding under prior ambi-
guity. In our formulation, the considered problem is closely related to both machine
learning and coding. It should be pointed out that an alternative way of visual in-
formation encoding is based on the bag-of-features (BoF) approach. We will proceed
with the generalized consideration of the BoF approach for multiple levels of multi-
resolution image representation. Since the core of this representation is based on vector
quantization we will refer to this approach as vector classification based recognition.

Practically, we consider and compare a type of face recognition system based prin-
cipally on sparse coding and a type based on vector quantization. Both approaches
are evaluated in terms of their classification accuracy for a certain range of distortions
and in their computational and memory requirements.

This paper is organized as follows. Section 2 gives the basic problem formulation.
In Section 3, we describe the sparse representation based recognition model, whereas
the vector quantization method is introduced in Section 4. The results of the computer
simulations for both methods are analysed in Section 5. Finally Section 6 concludes
the paper.

Notation: We use capital bold letters to denote real valued matrices, W ∈ <MxN ,
small bold letters to denote real valued vectors: x ∈ <M . We use sub and upper
indexed vectors to denoted a single realization out of many from a given distribution
e.g. xi(m) ∈ <M , where m denotes the sample from some distribution. We denote an
element of a vector as x. The estimate of x is denoted as x̂. All vectors have finite
length, explicitly defined where appropriate.

2 Problem Formulation

The face recognition system consists of two stages: enrolment and identification.
At the enrollment stage, the photos from each subject are acquired and organized in

the form of a codebook. We will assume that the recognition system should recognize
K subjects. The photos of each subject i, 1 ≤ i ≤ K, are acquired under different
imaging conditions such as lighting, expression, pose, etc., which will represent the
variability of face features and serve as intra-class statistics. We will also assume that
the frontal face images are aligned to the same scale, rotation and translation using
common computer vision features.

Thus each subject i is defined by xi(m) ∈ <N vectors representing a concatenation
of aligned image columns with 1 ≤ m ≤M , where M represents the number of training
images per subject that we assume to be the same for all subjects. The samples from
all subjects are arranged into a codebook represented by a matrix:

W = [x1(1), ...,x1(M), ...,xi(1), ...,xi(M), ...,xK(1), ...,xK(M)] ∈ <Nx(K∗M) . (1)

At the recognition stage, a probe or query y ∈ <N is presented to the system. The
system should identify the subject i as accurate as possible based on y and W. It
is also assumed that y always corresponds to one of the subjects represented in the
database. If it is not a case, a rejection option is integrated into the final decision.



3 Sparse Representation Based Recognition

In this section, face recognition is considered as a classification problem where the
classifier should produce a decision in favour of some class i whose codebook codewords
produce the most accurate approximation of the probe y. One important class of
approximations is represented by a sparse linear approximation [9], where the probe y
is approximated by ŷ in the form of:

ŷ = Wα , (2)

where α ∈ <MxK is a sparse coding vector. The coding vector α weights the
codebook codewords gathered for all classes to favour the contribution of codewords
corresponding to the correct class î. The model of approximations can be represented
as:

y = ŷ + r , (3)

where r ∈ <N is the residual approximation error vector.
For each class i, let δi : <K∗M → <K∗M be a function that selects the coefficients

associated with the ith class. For α ∈ RK∗N , δi(α) is a new vector whose only non-zero
entries are the entries in α that are associated with class i.

Then the probe y is classified based on the approximation î that minimizes the
Lp-norm of the residual error vector between y and ŷi:

î = arg min
1≤i≤K

‖Wδi(α)− y‖p. (4)

Equation (4) corresponds to the minimum Lp distance classification, where for
p = 2 one has the Euclidean distance and for p = 1 one has the Manhattan distance.
A natural extension to (4) that might be considered is a bounded distance decoding
(BBD) rule:

î = {i ∈ {1, · · · ,M} : ‖Wδi(α)− y‖p ≤ ηN} , (5)

where η ≥ 0. The BDD rule is useful when the classifier should reject probes that
are unrelated to the database. In the general case, the BDD will produce a list of
candidates that satisfy the above condition. To have only one unique î on the list, the
parameter η should be chosen accordingly. Geometrically in the Lp space, it means
that the Lp spheres with radius η around each approximate centroid for each class
should not overlap, thus producing a unique classification.

The generalized solution of the approximation problem (2) under the constraint
of sparsity of vector α as a constrained optimization problem was considered in our
previous work [5]:

α̂ = argmin
α

(φ(Wα − y) + λψ(Gα)) , (6)

where φ(.) is the penalty function corresponding to the prior distribution of the
residual vector, ψ(.) is a regulizer corresponding to the prior distribution of the ap-
proximation coefficients α and λ corresponds to the Lagrangian multiplier. The matrix
G is the regularization matrix, where a simple selection of the regularizer G corresponds
to the identity matrix G = I. A diagonal form of G might also be used to enforce
linear locality constraints [6].

Note that this problem formulation, depending on the penalty function and the
regularization term, considers the cases of hard and soft encoding (also global and
local as in [5]).



4 Multilevel Vector Quantization based Recogni-

tion

In this section, we consider an alternative model of classification based on multilevel
vector quantization (MVQ). The proposed approach has a certain similarity with BoF
methods and convolutional deep learning neural networks (CNN). The image is parti-
tioned on overlapping or non-overlapping blocks. The main idea behind the proposed
method is to learn a codebook of centroids C`j = {c`

1,j, · · · , c`
Kc,j
} for each block j,

1 ≤ j ≤ B`, where B` is the number of blocks at each level of decomposition `,
1 ≤ ` ≤ L and Kc stands for the number of centroids chosen to be the same for all
blocks and all levels. The different levels correspond to the different block sizes used
for the image partitioning. The decomposition of images on local blocks of different
sizes is explained by: (a) the necessity to cope with the non stationary nature of dis-
tortions that are approximated by stationary ones using local decompositions and (b)
the multilevel decomposition should take the relationship between local coefficients
into account, similar to CNN methods. The overall goal of the proposed method is
to achieve a competitive classification accuracy together with an acceptable memory
storage and complexity.

The MVQ based classification consists of three main steps: (a) codebook gener-
ation, (b) block encoding using the basis vectors of the generated codebook and (c)
classification.

4.1 Codebook generation

Given the training data xi(m) for all subjects 1 ≤ i ≤ K with 1 ≤ m ≤ M training
samples per subject, each image is partitioned on B` blocks of size 2 × 2 and 3 × 3
corresponding to the levels of decomposition ` ∈ {1, 2}, respectively. Therefore, each
block of a training image xi(m) is denoted as x`

i,j(m). The trained codebook for each

block j at the level ` consists of a set of Kc centroids C`j = {c`
1,j, · · · , c`

Kc,j
}, learned

with the k-means algorithm.

4.2 Encoding

Given a set of training samples xi(m) for all subjects 1 ≤ i ≤ K with 1 ≤ m ≤ M ,
represented with a multilevel block decomposition, each block is assigned to the nearest
centroids using a k-NN or ε-NN strategy (bounded distance decoding) ∗, represented
by the list:

L(x`
i,j(m)) = {w ∈ {1, · · · , Kc} : d(x`

i,j(m), c`
w,j) ≤ εL`}, (7)

where 1 ≤ w ≤ Kc, L` is the block total size at level ` and ε ≥ 0.
The encoding results in the generation of an encoding vector: Dx

`
i,j,w(m) = (dx

`
i,j,1(m),

· · · , dx`i,j,Kc
(m)) ∈ {0, 1}L×K×B`×Kc×M , with dx

`
i,j,w(m) = 1 for w ∈ L(x`

i,j(m)).
The final stage of encoding includes the pooling of results from all training samples

to the final index that is accomplished based on max-pooling (MAXP) or alternatively
average-pooling (AVGP):

maxp: dx
`
i,j,w = max

1≤m≤M
dx

`
i,j,w(m), avgp: dx

`
i,j,w =

M∑
m=1

dx
`
i,j,w(m). (8)

∗Due to the space limitation, we will proceed with the ε-NN only.



The main idea behind this particular form of max pooling is to capture all centroids for
a given block and level of decomposition that might represent a subject under various
observation distortions. In fact, if the observation model were stationary and known,
the representative centroids could be computed analytically.

The final stage of encoding includes the generation of an inverted file look up table
where each block 1 ≤ j ≤ B` has a set of centroids centroid w ∈ {1, · · · , Kc} at the
level ` ∈ {1, 2} containing the indices of corresponding subjects i ∈ {1, · · · , K}. This
look up table is very sparse and efficient for memory storage.

4.3 Classification

The classification consists of two stages: (a) block decoding and (b) final fusion.

4.3.1 Block decoding

The goal of block decoding is to find the ε-NN centroids corresponding to each block
of observation image y:

L(y`
j) = {w ∈ {1, · · · , Kc} : d(y`

j, c
`
w,j) ≤ εL`}, (9)

where 1 ≤ w ≤ Kc, L` is the block total size at level ` and ε ≥ 0.
The block decoding results in the generation of activation vector:

Dy
`
j,w = (dy

`
j,1, · · · , dy

`
j,Kc

). (10)

It is important to note that the activation vector might be considered as hard decod-
ing, when its elements are assigned 0 or 1, if the above condition is satisfied, or soft
decoding, when its element correspond to the reliability or likelihood of observing some
centroid c`

w,j given the block y`
j, for w ∈ L(x`

i,j(m)). In the case of soft decoding, the
reliable centroids will obtain weights closer to 1 and non-reliable closer to 0. It is also
remarkable that in the case of reliable decoding, the list L(y`

j) will be sparse indicat-
ing that the reliable centroid(s) is(are) found. Otherwise, all elements of this list will
have identical weights. Therefore, one can use the notion of sparsity to estimate the
reliability of the produced estimate. We refer the interested readers to [4] for more
details.

4.3.2 Final fusions

The final decision can be produced at each level of decomposition ` that would corre-
spond to more conservative recognition architectures or it can be obtained as a result
of fusion from several levels.

Therefore, each block of the observation image y at each level ` produces the lists of
image indices that are the most likely candidates for the corresponding blocks. Thus,
the final decision is just a result of the most likely index i ∈ {1, · · · , K} selection that
obtains the majority of votes. It should also be pointed out that each decision can be
produced as a result of the largest similarity between the observation vector dx

`
i,j,w and

dy
`
j,w that is estimated as:

î` = max
i∈{1,···,K}

t`i , where: t`i =

B∑̀
j=1

Kc∑
w=1

dx
`
i,j,wdy

`
j,w. (11)



The decision at the global level is produced as:

î = max
i∈{1,···,K}

ti, where: ti =
L∑

`=1

B∑̀
j=1

Kc∑
w=1

dx
`
i,j,wdy

`
j,w. (12)

5 Computer Simulations

In this section we present the results of the computer simulation. We compare the
results of the accuracy using several sparse based representation classification models
[5] versus MVQ with a list decoding model. In addition we indicate their computational
complexity by measuring the average execution time for a single recognition.

The computer simulation is carried out on the publicly available Extended Yale
B database for face recognition [3]. We use all images from this database cropped
and normalized to 192x168 pixels. In our set up, the images from the dataset are
rescaled to 10x12 pixels using nearest neighbour interpolation. In all of the computer
simulations we use raw, basic, elementary image pixel values (block of image pixel
values) as features. To be unbiased in our validation of the results we use 5-fold cross
validation, where for a single validation for each subject, half of the images are selected
at random for training and the remainder for testing.

All of the MVQ models for block j at the level ` use trained codebooks that consists
of a set of Kc centroids C`j = {c`

1,j, · · · , c`
Kc,j
}, learned with the k-means algorithm. The

number of centroids at any level ` for any block j is 512.
Figure 1 shows the resulting accuracy of the MVQ method using one layer indepen-

dent, overlapping 2×2, 3×3 and two layer joint, overlapping 2×2 and 3×3 blocks with
hard and soft decoding, employing bounded distance decoding with different ε values.
The parameter ε in equations (7) and (9) is chosen adaptively for each block based on
the sparsity level ε as defined in [4].

Table 1 summarizes the best achievable accuracy of classification at different levels
for the hard and soft decoding.

2× 2 3× 3 Fused

Hard encoding 0.94 0.94 0.95

Soft encoding 0.96 0.97 0.97

Table 1: MVQ recognition accuracy.

Figure 2a gives a comparison of the accuracy of all methods deployed while Figure
2b shows the computation time needed for classifying a single image query.

In conclusion, the accuracy of MVQ based recognition using 2× 2 and 3× 3 over-
lapping blocks is 0.97 which is on par with the best sparse coding based recognition
method denoted as ” ∗ ”, that is, the sparse approximation method that uses the L1

norm as a penalty function and the L1 norm as regulizer applied on overlapping blocks
from [5].

It is also noteworthy that the MVQ method is between a factor 200 faster in recog-
nition than competing sparse methods.



(a) MVQ using blocks of size
2×2

(b) MVQ using blocks of size
3×3

(c) MVQ using blocks of size
2×2 and 3×3

Figure 1: Accuracy of MVQ recognition with one layer independent, overlapping blocks
of size 2× 2, 3× 3 and two layer joint, overlapping blocks of size 2× 2 and 3× 3 with
hard and soft decoding (red and blue line respectively), employing bounded distance
decoding with different ε values, computed for each block j.

(a) Comparison of the accuracy using
different models

(b) The CPU running time using dif-
ferent models for a PC with an In-
tel Xeon CPU E5-16200 @ 3.6GH and
32GB RAM memory.

Figure 2: Comparison considering the best accuracy and computation time for the
MVQ method (using overlapping blocks with sizes 2 × 2 and 3 × 3) and the methods
*, WSRC, SRC and LLC

6 Future work

Future research will consider explore geometrically invariant coding strategies, and
further link the MVQ framework with conventional convolutional neural networks.
Furthermore, we will strive to optimize the encoding and list decoding strategies by
incorporating reliability statistics.

7 Conclusions

In this paper we considered the face recognition problem from a both machine learning
and information coding perspective, adopting an alternative way of visual information
encoding. Our model of classification is based on multilevel vector quantization (MVQ),
conceptually similar to BoF and CNN. The results from the computer simulations
confirm that the MVQ based recognition model achieves an accuracy that is comparable
to state-of-the-art sparse coding based image classification methods[5]. In addition the
complexity in terms of processing time and memory of the MVQ model is significantly
lower compared to other state-of-the-art methods based on sparse coding.
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