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Abstract—This paper addresses the learning problem for data-
adaptive transform that provides sparse representation in a space
with dimensions larger than (or equal to) the dimensions of the
original space. We present an iterative, alternating algorithm that
has two steps: (i) transform update and (ii) sparse coding. In the
transform update step, we focus on novel problem formulation
based on a lower bound of the objective that addresses a
trade-off between (a) how much are aligned the gradients of
the approximative objective and the original objective, and (b)
how much the lower bound is close to the original objective.
This allows us not only to propose approximate closed form
solution but also gives the possibility to find an update that
can lead to accelerated local convergence and enables us to
estimate an update that can lead to a satisfactory solution under
a small amount of data. Since in the transform update, the
approximate closed form solution preserves the gradient and
in the sparse coding step, we use exact closed form solution,
the resulting algorithm is convergent. On the practical side,
we evaluate on image denoising application and demonstrate
promising denoising performance together with advantages in
training data requirements, accelerated local convergence and
the resulting computational complexity.
Index terms− Sparse representation, sparsifying transform

learning, image denoising.

I. INTRODUCTION

Nowadays, in many areas, a common practice is to process,
analyze, recognize, classify data, etc. in a transform domain.
Due to the presence of noise (or data variability) specific data
properties or prior knowledge in the form of assumption has
to be taken into account.

The fundamental concept that was widely exploited in the
past decade, addressing data adaptive processing and data
analysis is a sparse representation. Given a data sample
x ∈ <N and a set of vectors B = [b1,b2, ...,bM ] ∈ <N×M
(formally known as a frame1), a sparse representation y ∈ <M
for x over B is one that uses a sparse (small) number of
vectors bi ∈ <N from B to represent x. Three main models
were proposed for sparse signal representations: the synthesis
model [1], the analysis model (noisy signal analysis model [2])
and the sparsifying transform model [3].

1A set of M orthonormal vectors with vector dimensionality N equal to
M is said to form a basis set for that vector space. A frame of an inner
product space is a generalization of a basis of a vector space to sets that may
be linearly dependent.

Learning any one of the previous model is challenging
when the model matrix is overcomplete2. Several algorithms
[4], [5] and [6] were proposed for learning analysis and
sparsifying models with well conditioned, non-structured and
overcomplete matrix. To find a solution, these algorithms
typically alternate between update on the transform matrix and
estimate for the sparse representations. Usually, the transform
update step is based on the gradient of the objective where a
solution is obtained by iteratively taking one or several gradient
steps. Depending on the used algorithm for an update this
might add computational complexity. On the other hand, the
existence of a closed form solution (unique or not) w.r.t. the
optimization objective or its approximation in the transform
update step and the algorithm convergence for that case is not
fully explored.

A. Contributions
This paper addresses the sparsifying transform model with

overcomplete matrix and presents the following contributions:
(i) we propose iterative, alternating algorithm for learning

overcomplete sparsfing transform with two steps: transform
update step and sparse coding step,

(ii) we introduce a constrained problem formulation for the
transform update step with objective that represents a lower
bound approximation to the original objective of the related
transform estimation problem,

(iii) we propose approximate closed form solution that
addresses a trade-off between (a) how much are aligned
the gradients of the approximative objective and the original
objective and (b) how much the lower bound is close to the
original objective,

(iv) we give a convergence result for the iterating sequence
of the objective function values generated by the iterating steps
of the proposed algorithm with exact and approximate closed
form solutions and

(v) we present an evaluation by computer simulation in the
image denosing application, showing competitive performance
while using small amount of the noisy data used for learning.

2A matrix A ∈ <M×N is said to be overcomplete if M > N .
Equivalently, if the number M of columns am ∈ <N in AT is bigger than
the dimensionality N of am, i.e., M > N , we might also say that the set
of vectors {a1,a2, ...,aM} is linearly dependent and that this set forms a
frame.



II. PRIOR WORK

In the following we introduce the common sparse signal
models.
A. Synthesis Model

As the name suggests, the synthesis model synthesizes a data
sample x ∈ <N as an approximation by a linear combination
y ∈ <M (referred to as a sparse data representation) of a
few words (frame vectors) ‖y‖0 << M , from a dictionary
(frame) D ∈ <N×M , i.e., x = Dy + v, where v ∈ <N
denotes the approximation error. With the synthesis model
approach the data reconstruction is addressed explicitly. This
model assumes that the data x lies in the column space of the
dictionary D, with the error vector v defined in the original
data domain. The two main open issues with this model are
the high computational complexity for the learning of the
dictionary D and the estimation of the sparse representation
y. The problem of learning a synthesis dictionary is NP-hard.
Nonetheless, in the recent years many algorithms have been
developed for the solution of the dictionary learning problem
[1], [7], [8], [9] and [10].
B. Analysis Model

It uses a dictionary Ω ∈ <M×N with M > N to analyze
the signal x ∈ <N . This model assumes that the product of
Ω and x is sparse, i.e., y = Ωx with ‖y‖0 = M − s, where
0 ≤ s ≤ M is the number of zeros in y ∈ <M [11] and
[4]. The vector y is the analysis sparse representation of the
data x w.r.t. Ω. If the data sample x is known, its analysis
representation w.r.t. a given Ω can be obtained via multiplying
x by Ω. However, when the observed signal is contaminated
by noise, the clean signal x has to be estimated first in order
to get its analysis representation, which leads to the analysis
pursuit problem [11]. Several algorithms have been proposed
for analysis dictionary learning [11], [4], [12], [5] and [13].
The authors in [14] give a comprehensive overview of different
learning methods for the analysis model. Again for this class
of algorithms the computational complexity is an open issues.
Moreover, it is ever higher compared to the previous model if
the analysis pursuit problem [11] is considered, coupled with
the estimate of its dictionary.
C. Transform Model

In contrast to the synthesis model and similarity to the
analysis model, the sparsifying transform model does not
targeted explicitly the data reconstruction. This model assumes
that the data sample x is approximately sparsifiable under a
linear transform A ∈ <M×N , i.e., Ax = y + z, z ∈ <M ,
where y is sparse ‖y‖0 << M . The error vector z is defined
in the transform domain, which is different compared to the
two previous models. Note that the first advantage of the
sparsifiying transform model is that it extends and represents
a generalization of the analysis model [15] since there is no
explicit assumption on the sparse representation y or on the
data sample x. The sparse encoding in this model is a direct
problem which is a converse to the inverse problem in the syn-
thesis model. The sparsifying transform model was introduced
in [16]. The sparsifying transform having a square matrix was

studied in [15], the sparsifying transform having a structured
set of square matrices and non-structured overcomplete matrix
A ∈ <M×N ,M ≥ N were studied in [6], [17] and [18].

D. Paper Organization

The rest of the paper is organized as follows. Section 3,
presents the problem formulation. Subsection 3.A. presents
the learning algorithm. Subsection 3.B. presents the algorithm
convergence result and subsection 3.C. gives a block level
image denoising formulation. Section 4 is devoted to computer
simulation and Section 5 concludes the paper.

III. PROBLEM FORMULATION

Assume a data matrix X ∈ <N×L is given that has as
columns data samples xl ∈ <N , where l ∈ L = {1, ..., L}
and L is the number of data samples. We address the learning
of approximately sparsifying transform having overcomplete
transform matrix A ∈ <M×N ,M > N by the following
problem formulation:

min
A,Y
‖AX−Y‖2F +Ω1(A), subject to ‖yl‖0 ≤ s,∀l ∈ L, (1)

where ‖.‖F and ‖.‖0 denotes the Frobenius and `0-”norm”,
respectively and Y = [y1, ...,yL] ∈ <M×L has as columns the
transform representations yl. The first term in (1) is the spar-
sification error [3], it represents the deviation of the linearly
transform data AX from the exact sparse representation Y in
the transform domain. The penalty Ω1(A) on the transform
matrix A is defined as Ω1(A) = λ1

2 ‖A‖
2
F + λ2

2 ‖AAT −
I‖2F −λ3 log |det ATA|, where λk are Lagrangian multipliers
∀k ∈ {1, 2, 3}. The second term Ω1(A) and the penalty
‖yi‖0,∀i ∈ I induce constraints on the properties of the
matrix A and the transform representations Y, respectively.
The ‖A‖2F penalty helps regularize the scale ambiguity in
the solution of (1), that occurs when the data samples have
representations with zero valued components. The log |det
(ATA)| and ‖A‖2F are functions of the singular values of
A and together help regularize the conditioning of A [15],
[6], [18], [19]. Assuming that the expected coherence µ2 (A)
between the rows am of A, i.e., AT = [a1, ...,aM ] is defined
as µ2 (A) = 2

M(M−1)

∑
m1 6=m2

|am1
aTm2
|2, ∀m1,m2 ∈M =

{1, ..,M}, then the penalty ‖AAT − I‖2F helps enforce a
minimum expected coherence µ2 (A) and unit `2-norm for
the rows of A.

The transform data yl are constrained to have s non-zero
elements by the sparsity inducing `0-”norm” ‖yl‖0 ≤ s, l ∈ L.

A. Learning Algorithm

Problem (1) is non-convex in the variables {A,Y}. If the
variable A is fixed, (1) is convex, however if Y is fixed (1)
remains non-convex because the matrix AAT in the penalty
function Ω1 has the term AAT to the power of 2 and the
penalty − log |det ATA|.

To solve (1) we use an iterative, alternating algorithm that
has two steps: transform estimate and sparse coding. In the
transform estimate step, given Yt that is estimated at iteration
t, we use approximate closed form solution to estimate the



transform matrix At+1 at iteration t+ 1. In the sparse coding
step, given At+1, the sparse codes yt+1

l are estimated by a
closed form solution.

Transform estimate Let the transform data Yt at iteration t be
known, then problem (1) reduces to a problem for estimation
of the transform matrix At+1 that is defined as follows:

(P1) : min
At+1

g(At+1,Yt)︷ ︸︸ ︷
‖At+1X−Yt‖2F + Ω1(At+1) .

(2)

− Alternative Problem Formulation for Transform Estimate
Instead of addressing problem (P1), in this work, we introduce
a constrained problem and focus on a objective that is a lower
bound on the objective in problem (P1), i.e.,

min
At+1

gε(A
t+1,Yt)≤g(At+1,Yt)︷ ︸︸ ︷

Tr{At+1XXT (At+1)T−2At+1G+(Yt+1)TYt}+Ω1(At+1)

subject to At+1 = VSTΣAΣ−1UT (3)

Tr{ΣA} ≥
1

βλmin
Tr{ΣC},

where gε(At+1,Yt) = Tr{At+1XXT (At+1)T−2At+1G +
(Yt)TYt}+Ω1(At+1) is the lower bound for g(At+1,Yt) =
Tr{At+1XXT (At+1)T − 2At+1X(Yt)T + (Yt)TYt} +
Ω1(At+1), with G ∈ <N×M as approximation for
X(Yt)T . We assume that At+1 decomposes as At+1 =
VSTΣAΣ−1UT , where V ∈ <M×N , S ∈ <N×N and
U ∈ <N×N are tall column-wise orthonormal, and square or-
thonormal matrices, respectively, ΣA ∈ <N×N , Σ ∈ <N×N ,
ΣC ∈ <N×N are diagonal matrices, λmin ∈ < and β ≥ 0.

We derive the matrix ΣC and λmin based on the matrices
V, S, Σ and U and the first order derivative of g(At,Yt)
w.r.t. At estimated at iteration t. We use the constraint
Tr{ΣA} ≥ 1

βλmin
Tr{ΣC} to ensure that the gradient of

the approximated objective gε(A
t+1,Yt) is preserved w.r.t.

gradient of the original objective g(At+1,Yt).
In the following we present the approximate closed form

solution for (P1) which in fact represents the solution to (3).
In addition, we explain how V, S, U, Σ and ΣA are estimated,
and how G, ΣC and λmin are constructed.
− Approximate Closed Form Solution Given Yt ∈ <M×L,

X ∈ <N×L, M ≥ N , λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, let the eigen
value decomposition UΣ2UT of XXT +λ1I and the singular
value decomposition SDVT of UTX(Yt)T exist, then if and
only if Σ(n, n) = σ(n) > 0, ∀n ∈ N = {1, ..., N}, the
original problem (P1) has approximate closed form solution
as:

At+1 = VSTΣAΣ−1UT , (4)

where ΣA is a diagonal matrix, ΣA(n, n) = σA(n) ≥ 0, and
σA(n) are solutions to:

min
σA(n)

c4(n)σ4
A(n) + c2(n)σ2

A(n)− σΓ(n)

σ(n)
σA(n)− f(σA(n)),

subject to σA(n) ≥ 1

βλmin
σC(n), (5)

with c4(n) = λ2

σ4(n) , c2(n) = σ2(n)−2λ2

σ2(n) , f(σA(n)) =

2λ3 log σ(n)
σA(n) , σΓ(n) = T (n, n), T = SD, σC(n) =

ΣC(n, n), ∀n ∈ N .
The diagonal matrix ΣC contains the singular values of

C =
(
∂g(At,Yt)

∂At

)T
At, ∂g(At,Yt)

∂At = (AtX − Yt)XT +

λ1A
t + λ2(At(At)T − I)At − λ3((At)T )−1 is the first

order derivative of g(At,Yt) w.r.t. to the estimate At at
iteration t, λmin is the smallest singular value of F =(
Σ−1UT

) (∂g(At,Yt)
∂At

)T (
VST

)
and β ≥ 0.

Proof : The matrix G = ΣΓVT ' X(Yt)T . In the trace
form, this approximation results in the lower bound inequal-
ity −Tr{ΣAΣ−1ΣΓ} ≤ −Tr{ΣAΣ−1T} and ensures that
gε(A

t+1,Yt) ≤ g(At+1,Yt). The proof is given in [20],
Appendix A together with the proof about the existence of
a closed form solution in the form of (4) with a solution for
ΣA without the constraints in (5).

The constraint (5) is important in order to guarantee the
preservation of the gradient ∂gε(A

t+1,Yt)
∂At+1 of the approxima-

tive objective gε(At+1,Yt) w.r.t. gradient ∂g(At+1,Yt)
∂At+1 of the

original objective g(At+1,Yt).
We assume that the solutions At and Yt, and the gradient

∂gε(A
t,Yt)

∂A at iterations t are known. In order to preserve
the gradient of the approximative objective gε(At+1,Yt) the
solution for At+1 should be estimated such that it holds:

Tr{
(
∂g(At,Yt)

∂At

)T(
At−βAt+1

)
}≤0, (6)

where At−βAt+1 is a descend direction only if (6) holds true

and β ≥ 0. We denote C =
(
∂g(At,Yt)

∂At

)T
At and by using

(4), we denote F = Σ−1UT
(
∂g(At,Yt)

∂At

)T
VST . In order to

simplify, we use C and F and express the left hand side of
(6) as Tr{C− βFΣA}. By using the smallest singular value
λmin of the matrix F we have the following bound:

Tr{C− βλminΣA}≥Tr{C− βFΣA}, (7)

which represents an upper bound on the condition for the
preservation of the gradient (6). When we reorder the left hand
side of (7), impose that the upper bound is nonnegative from
above, i.e., 0 ≥ Tr{C − βλminΣA}, and consider a more
strict, element-wise condition then we arrive at:

σA(n) ≥ 1

βλmin
σC(n), (8)

where σC(n) = ΣC(n, n) and ΣC is diagonal matrix with
diagonal elements equal to the singular values of C �
− Trade-Off Gradient Alignment and Lower Bound Tightness

We use bounds in the form of:

−Tr{ΣAΣ−1ΣΓ} ≤ −Tr{ΣAΣ−1T}
0 ≥ Tr{C− βΣFΣA} ≥ Tr{C− βFΣA}

(9)

where ΣF (n, n) = λmin,∀n ∈ N . The first bound is related
to the approximated objective gε(A

t+1,Yt), that is, its left



0 20 40 60 80 100 120

Iteration Number

0

1000

2000

3000

4000
Transfrom Error

0 20 40 60 80 100 120

Iteration Number

-6

-5.5

-5

-4.5

-4

-3.5

-3
×10

4

-Tr{AXY
T
}

-Tr{AG}

a) b)

0 20 40 60 80 100 120

Iteration Number

0

5

10

15

20
Conditioning Number

0 20 40 60 80 100 120

Iteration Number

0

0.005

0.01

0.015

0.02
Expected Coherence

c) d)
Fig. 1. The evolution of a) the transform error ‖AX − Y‖2F , b) the
−Tr{AXYT } and its lower bound approximation −Tr{AG} c) the
conditioning number and d) the expected mutual coherence µ(A) while
learning the transform matrix A on overlapping 8 × 8 noisy image blocks
(equivalently N = 64) from the Cameraman image, where M was set to 80
and the sparsity level was set to 36.

hand side is related to G that appears in gε(A
t+1,Yt) and

the second bound is related to the constraint about the the
preservation of the gradient. The bounds (9) address a trade-off
between how much are aligned the gradients ∂g(At+1,Yt)

∂At+1 and
∂gε(A

t+1,Yt)
∂At+1 of the approximative objective and the original

objective, and how much the lower bound gε(A
t+1,Yt) is

close to the objective g(At+1,Yt).
The bounds (9) offer three advantages in the proposed solu-

tion. First, their use results in approximate closed form solution
expressed by (4) with (5). Second, they allow to estimate At+1

that can lead to accelerated convergence, that is they allow to
estimate a descend direction At−βAt+1 such that the original
objective g(At+1,Yt) is rapidly decreased. Third, the bounds
(9) enables us to estimate At+1 that can lead to satisfactory
solution under small amount of data, where the key is again
the trade-off between the lower bound approximation and the
alignment of the gradient that is addressed with (9).

While (9) only describes the trade-off, its limits and its
optimal characterization w.r.t. the acceleration and the required
minimum amount of data for acceptable solution are out
of the scope of this paper. Nonetheless, using the proposed
bounds (9), we empirically demonstrate that indeed the pro-
posed solution for an image denoising application exhibits the
aforementioned advantages.

Sparse coding Given At+1, for ∀xl, l ∈ L, the sparse coding
problem is formulated as follows:

yt+1
l = argmin

yl

‖At+1xl − yl‖22, subject to ‖yl‖0 ≤ s, (10)

where we use the global optimal solution as proposed in [6].

B. Local Convergence of the Algorithm

Since in the transform update, the approximate closed form
solution preserves the gradient and in the sparse coding step,
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Fig. 2. The evolution of the normalized transform error ‖AX−Y‖2F

L
, where

L is the total number of samples xl ∈ {1, ..., L} under a) sparsity levels
s ∈ {4, 10, 16, 22, 28, 24, 40, 46, 52, 58, 64, 70} and b) amounts of data
expressed in percentage from the total amount of data while learning the
transform matrix A on overlapping 8 × 8 noisy image blocks (equivalently
N = 64) from the Cameraman image, where M was set to 80 and the sparsity
level was set to 36.

we use exact closed form solution, the following allows us to
state and prove a local convergence result.

Theorem 1 Given data X and a pair of initial transform
and sparse data {A0,Y0}, let {At,Yt} denote the iterative
sequence generated by the solution (4) with (5) and the closed
form solution of (10). Then, the sequence of the objective
function values g (At,Yt) is a monotone decreasing sequence,
satisfying g

(
At+1,Yt+1

)
≤ g

(
At+1,Yt

)
≤ g (At,Yt), and

converges to a finite value denoted as g∗.

Proof: In the transform update step, Yt is fixed and approxima-
tive minimizer is obtained w.r.t. At+1, with gε(A

t+1,Yt) ≤
g(At+1,Yt). Therefore gε(A

t+1,Yt) ≤ g(At+1 ,Yt) ≤
g(At,Yt). In the sparse coding step an exact solution is ob-
tained for Yt+1 with fixed At+1. Therefore, g(At+1,Yt+1) ≤
g(At+1,Yt), holds trivially. Combining the results for the two
steps, we have g(At+1, Yt+1) ≤ g(At,Yt) for any t. Since
the function g(At,Yt) is lower bounded [3], the sequence of
objective function values {g(At,Yt)} is a monotone decreas-
ing and lower bounded, therefore it converges �

Since we use ε-Close Approximative solution in the
Transform estimate step we named our algorithm as εCAT.

C. Image Denoising With εCAT

A S1 × S2 noisy image, represented as a vector is denoted
as q = x + g ∈ <S1S2 , where g and x are the noise and
the original image, respectively. The noisy image block is
denoted as qi = Eiq ∈ <N , ∀i ∈ I, where the matrix
Ei ∈ {0, 1}N×S1S2 is used to extract noisy image block at
location i and I is the index set of all image block locations.

The extension of (1) for block level image denoising is
formulated as:

min
xi,αi,A

L∑
i=1

‖Axi − yi‖22 + τ‖xi − qi‖22 + Ω1(A)

subject to ‖yi‖0 ≤ si, i ∈ I,
(11)

where A ∈ <M×N is the transform matrix, xi ∈ <N is
the estimated original image block, yi ∈ <M is the sparse
transform representation with sparsity level si and τ is a
parameter inversely propositional to the noise variance σ2.

Note that by using (4), the pseudo-inverse of A exists
as A† = UΣΣ−1

A SVT . Furthermore, given A† and yi,



TL-S TL-O K-SVD εCAT FRIST OCTOBOS BM3D
ldata[%] 25− 100 25− 100 100 3− 15 100 100 100
te[min] 4.6 2.9 9.8 1.24 3.1 3.3 /

TABLE I
THE EXECUTION TIME IN MINUTES AND THE PERCENTAGE OF THE USED

IMAGE DATA.
σ TL-S TL-O K-SVD εCAT FRIST OCTOBOS BM3D

Peppers 10 34.45 34.49 34.2 34.44 34.68 34.57 34.66
20 29.98 30.60 30.82 30.63 31.02 30.97 31.29

Cameramen 10 33.93 33.83 33.72 33.93 34.16 34.15 34.18
20 29.93 29.95 29.82 30.12 30.33 30.24 30.48

Barbara 10 34.45 34.55 34.42 34.60 34.57 34.64 34.98
20 30.53 30.90 30.82 30.91 / 31.05 31.78

Lena 10 34.48 34.68 35.28 34.96 35.67 35.64 35.93
20 32.12 32.00 32.43 32.51 / 32.59 33.05

Man 10 32.96 32.16 32.71 32.75 33.06 32.98 33.98
20 29.57 28.63 29.40 29.41 29.76 29.74 30.03

TABLE II
DENOSING PERFORMANCE IN PSNR, WHERE σ IS THE NOISE STANDARD

DEVIATION.

(11) approximately reduces to constrained projection problem
(PD) : minxi ‖xi−A†αi‖22 +τ‖xi−qi‖22 for the variable xi,
and its closed form solution for individual image block xi can

be computed as xi =

[√
τI
I

]† [√
τqi

A†yi

]
= e1
√
τqi + e2A

†yi,

where
[√

τI
I

]†
is the pseudo-inverse of

[√
τI
I

]
(two concate-

nated diagonal matrices
√
τI and I) and the solution is easily

computed as [e1, e2] = [
√
τ , 1]

†3. The denoising problem
(11) is non-convex in the variables xi,yi and A together.
Similarly to [6] and [10], we use an iterative procedure that
has two steps. In the first step (Transform estimate update),
xi = Eiq is fixed, the initial sparsity is set to si = s and
the overcomplete transform matrix A is estimated using the
proposed approximate closed from solution. In the second step
(Sparse coding update), given A, the remaining variables yi
and xi are updated similarly as proposed in [6]. Commonly, a
sparsity level si for the sparse code yi is chosen such that the
denosing error term ‖qi − xi‖22 is bounded from above by a
constant. The usual bound is ‖qi−xi‖22 ≤ CNσ2, where C is
a constant, σ2 is the noise variance, xi = e1

√
τqi + e2A

†yi
and yi is estimated as a solution to (P2). Here, instead, we
upper bound just the inner product of the estimate xi, i.e.,
xTi xi ≤ C0CNσ

2, where C0 is an additional constant. The
new estimates for the sparsity levels si,∀i, are used in the
next Transform estimate update, and the procedure is iterated
between Transform estimate and Sparse coding updates until
the predefined number of iterations is reached. In the final
iteration, only these xi that satisfy ‖qi − xi‖22 ≤ CNσ2 are
considered as the actual denoised image patches. Given the
final estimates the denoised image x is obtained in the same
fashion as in [10], [16] and [6].

IV. COMPUTER SIMULATION

This section validates the proposed approach by numerical
experiments and demonstrates its advantages.

3Note that the coefficients [e1, e2] have to be computed only once, stored
and then reused in the later computations.

ldata[%] 1 2 3 5 7 10

Peppers te[min] 0.17 0.22 0.25 0.37 0.45 0.70
PSNR 31.5 33.8 34.1 34.3 34.4 34.4

Cameramen te[min] 0.17 0.22 0.26 0.5 0.8 1.01
PSNR 31.5 33.3 33.4 33.7 33.8 33.9

Barbara te[min] 0.22 0.34 0.49 0.66 0.83 1.13
PSNR 31.5 33.3 33.4 33.7 34.1 34.3

Lena te[min] 0.25 0.40 0.61 0.70 0.86 1.14
PSNR 31.5 33.3 33.4 34.4 34.4 34.7

Man te[min] 0.27 0.41 0.61 0.73 0.87 1.17
PSNR 30.0 31.8 31.9 32.5 32.6 32.7

TABLE III
THE PSNR FOR THE εCAT ALGORITHM LEARNED ON PERCENTAGE OF

THE AVAILABLE NOISY IMAGE DATA WITH NOISE LEVEL σ = 10.

A. Data and Algorithm Inicalization

To evaluate the potential of the proposed approach we used
the Peppers, Cameramen, Barbara, Lena and Man images at
image resolution 256×256, 256×256, 512×512, 512×512 and
512 × 512, respectively. The following algorithm parameters
are used N = 64,M = 80, λ1 = λ2 = λ3 = 10 × 107,
C = 1.08, C0 = 1/2 and τ = 0.01/σ. The algorithm is
initialized with a random matrix having i.i.d. Gaussian (zero
mean, variance one) entries.

B. Denoising Setup

The denoising recovery performance is evaluated at noise
levels σ = 10 and σ = 20 and the sparsity is set to 25
and 19, respectively. The transform is learned by executing
300 iterations. The results are obtained as average of 3 runs.
We use not optimized Matlab implementation running on PC
having Intel Xeon(R) 3.60GHz CPU and 32G RAM memory.
For each of the noisy images a sparsifying transform matrix
A is learned using only 1%− 15% of the total amount of its
noisy patches. The result of εCAT is compared with the results
of the algorithms proposed in [16] (TL-S), [6] (TL-O), [10]
(K-SVD), [17] (OCTOBOS), [21] (FRIST) and [22] (BM3D).

C. Results

The results are shown in Figures 1 and 2, and Tables I, II and
III. Our empirical validation suggested that in our algorithm
the solution for A expressed by (4) with (5) when using the
bounds (9), is equivalent to the solution (4) with (5), but
without the constraint in (5). We noticed that the resulting
σA(n) are higher then 1

βλmin
σC(n), ∀n ∈ N which implies

that the constraint is implicitly satisfied and the proposed
solution without the same constraint in (5) preserves the
gradient. Therefore, we present results using the solution for
A that is without the explicit inequality constraint in (5).

In Figure 1 are shown the evolution of the transform
error, the term Tr{AXYT }, its lower bound Tr{AG},
the conditioning number and the expected mutual coherence
µ(A) while learning the transform matrix A on Cameraman
image. The transform error rapidly decreases, the lower bound
Tr{AG} approximation is well below Tr{AXYT } while the
conditioning number and the expected mutual coherence µ(A)
are decreased from initial values and remain low. This suggest
that the proposed solution efficiently reduces the transform
error while satisfying the regularization constraints on A.



In Figure 2 a) are shown the evolution of the transform
error across varying number of sparsity wile the dictionary
size, the amount of data and the parameters {λ2, λ3, λ4} are
fixed. The transform error is decreasing for all sparsity levels
and for higher sparsity levels the rate of decrease on the
transform error is faster. In the same figure under b) we show
the evolution of the transform error across varying amount of
data wile the sparsity level, the dictionary size, the amount of
data and the parameters {λ2, λ3, λ4} are fixed. We see that the
actual error is decreasing and the rate of decrease is increasing
as we increase the amount of data and it saturates around 14%
and 15%. This confirms that the proposed algorithm with the
introduced update for A can attain satisfactory solution with
low transform error while using a small amount of data.

Considering the results that are shown in Tables I and II only
15% of the total amount of available patches were used for
learning the transform matrix of the εCAT algorithm, whereas
the rest of the algorithms use 25% − 100%. This reflects the
resulting execution time that (as shown on Table I) is around
4×, 2×, 9×, 3× and 3× faster then TL-S, TL-O, K-SVD,
FRIST and OCTOBOS, respectively.

Table II shows evaluation across different images and com-
pares with several algorithm. The proposed algorithm has
slightly better overall denoising results for the used noise
levels σ ∈ {10, 20} compared to the TL-S, TL-O and K-SVD
algorithm. On the other hand w.r.t. the rest of the algorithms
the results are competitive, but, have slightly lower PSNR. We
explain this by the fact that in the FRIST, OCTOBOS and
BM3D algorithms a flipping and rotation invariance, grouping
and block similarity priors were used, respectively, but, in
the current version of our algorithm these priors were not
considered. Nonetheless, some of the benefits when using
εCAT are notable in Table III. Even when using only 3%−7%
of the noisy image patches during learning there is no big
degradation in the final results and they remain competitive
compared to the TL-S, TL-O and K-SVD algorithm.

In summary, the results confirm that the main advantage
of the current version of the proposed algorithm when using
the bounds (9) for updating A by (4) with (5), but without the
constraint in (5) is the implicit preservation of the gradient and
the ability to rapidly decrease the transform error and thereby
the objective per iteration. This results in fast convergence and
small amount of data required to learn the model parameters.

V. CONCLUSION

This paper considered the transform model, an alternating
algorithm and presented analysis around the transform update
step. We proposed iterative algorithm for transform learning
with two alternating steps having exact and approximate
closed form solutions. The preliminary results demonstrated
promising performance on the image examples provided in
this paper. Performance evaluation on more extensive image
collection, together with extensions considering other image
priors is left for future work.
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