
 

 

 Abstract– To develop a robust and generalizable deep learning 

(DL) model gathering a massive and heterogenous dataset is 

crucial as the DL performances could be varied across different 

acquisition and reconstruction settings in the real clinical 

situation. Furthermore, sharing data with third parties is highly 

limited because of legal, ethical, security, and privacy issues. To 

address the aforementioned challenges, Federated learning (FL) 

allows one to train a DL model without sharing the data between 

different centers in a distributed and decentralized manner. In 

the current study, we developed deep FL-based models for 

intraprostatic lesion segmentation using FL approaches and 

compared their results by center based. Altogether 400 

histologically proven prostate cancer patients with T2-weighted 

MRI images from eight different centers were enrolled. Dynamic 

data augmentation techniques for flipping left/right, elastic 

deformation, and random cropping was adopted. Two-stage 

cascaded U-Net consisting of modified 3D U-Ne, and Dual 

Attention 2D U-Net were implemented as the core of DL 

segmentation. MRI images and a prostate mask were used as 

input in this network. In addition, Federated Averaging 

(FedAvg) algorithm was implemented in this study. All 

evaluations were performed on 30% of test sets. In terms of dice 

and Jaccard coefficient, CeBa and achieved 0.77 ± 0.06 vs. 0.84 ± 

0.05 (CI95%: 0.76 - 0.79 vs. 0.82 - 0.85) and 0.63 ± 0.09 vs. 0.72 ± 

0.08  and (CI95%:0.61 - 0.65 vs.  0.70 - 0.74). We set out to 

develop a DL-based automated algorithm capable of segmenting 

intra-prostatic lesions using T2W MR images. Due to the 

complex structure and low-contrast nature of the intraprostatic 

lesion in T2W MR images, our proposed algorithm performed 

very well compared to manual segmentation across different 

centers. Our FL algorithms outperformed center base algorithms 

in which each center developed a model using their local dataset, 

which addresses data sharing between different centers. 
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I. INTRODUCTION 

rostate cancer will be the third cause of cancer mortality in 

the United States in 2022. The estimated new cancers and 

deaths were 268,490 and 34,500, leading to 27% and 21% of 

all cancers in American men, respectively [1]. One of the main 

tools for diagnosing prostate cancer is a biopsy guided by 

transrectal ultrasound (TRUS) with fusion with magnetic 

resonance imaging (MRI) which is real-time, low-cost, and 

versatile. MRI offers increasingly reliable visualization of 

potentially significant prostate cancers [2]. Thus, it has shown 

advantages to better select patients for biopsy and facilitates 

direct targeting of lesions during the biopsy. The delineation 

of lesions manually is challenging due to inter and intra-

observer variations[3-8]. 

To develop a robust and generalizable deep learning (DL) 

model gathering a massive and heterogenous dataset is crucial 

as the DL performances could be varied across different 

acquisition and reconstruction settings in the real clinical 

situation  [3-6, 9-13]. However, single centers are unlikely 

able to provide these massive and heterogenous data because 

of limited resources and most likely gathering data with the 

same scanner, acquisition, and reconstruction setting [14-16]. 

Therefore, different centers and hospitals must collaborate and 

pool their dataset to third parties to gather this large and 

heterogenous dataset. However, sharing data with third parties 

is highly limited because of legal, ethical, security, and 

privacy issues [17]. 

FL brings this opportunity to train a DL model without 

sharing the data between different centers in a distributed and 

decentralized manner to address the aforementioned 

challenges. In the current study, we developed deep FL-based 

models for intraprostatic lesion segmentation using FL 

approaches and compared their results by center-based 

(training and evaluation performed in single centers). 

II. MATERIALS AND METHODS 

In this study, T2-weighted MRI images were taken. Altogether 

400 histologically proven prostate cancer patients with T2-

weighted MRI images from eight different centers were 

enrolled. All data were split in each center into a 

train/validation set (70/10% patients) and a test set (20% 

patients). Dynamic data augmentation techniques for flipping 

left/right, elastic deformation, and random cropping was 

adopted. Two-stage cascaded U-Net consisting of modified 

3D U-Ne, and Dual Attention 2D U-Net were implemented as 

the core of deep learning segmentation. MRI images and a 

prostate mask were used as input in this network.  

 Federated Averaging (FedAvg) algorithm was implemented 

in this study. In FedAvg, the global model developed by the 
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server distributes data through different centers. Next, the 

models are trained separately in each center using the local 

data set, and finally, trained models from all centers are 

returned to the server to aggregate and update the central 

global model. These steps are repeated until convergence 

criteria are met, for example, until no significant loss descent 

is observed. In addition to FedAvg, we trained and tested 

models for each center separately, named center-based 

training (CeBa). 

We optimized our loss function (binary cross-entropy + Dice-

loss) by the Adaptive Moment Estimation (Adam) optimizer 

and used an initial learning rate of 5 × 10− 4, batch size of 2, 

and epoch value of 1000 with a linear warmup of 10 epochs. 

Furthermore, we implemented different standard quantitative 

segmentation metrics, including Dice Coefficient metric, 

Jaccard index, Sensitivity, Specificity, Precision, Average 

Surface Distance (ASD, mm),  average Hausdorff Distance 

(avgHD, mm), 95% Hausdorff Distance (HD 95%, mm), 

Relative Absolute Volume Difference (RAVD, mm), and 

Volume Correlation to quantify the performance of DL 

models in different frameworks. All these metrics were 

calculated on test sets (20% of each center’s data). 

III. RESULTS 

In terms of dice and Jaccard coefficient, CeBa and achieved 

0.77 ± 0.06 vs. 0.84 ± 0.05 (CI95%: 0.76 - 0.79 vs. 0.82 - 

0.85) and 0.63 ± 0.09 vs. 0.72 ± 0.08  and (CI95%:0.61 - 0.65 

vs.  0.70 - 0.74). In terms of Sensitivity, Specificity, Precision, 

ASD,  avgHD, HD (95%), RAVD, and VC 0.72 ± 0.09, 1 

± 0, 0.85 ± 0.11, 0.42 ± 0.17, 0.61 ± 0.31, 2.13 ± 1.59, -0.13 ± 

0.21, and  0.97 ± 0.02 achieved for CeBa, respectively. And 

0.8 ± 0.08, 1 ± 0, 0.89 ± 0.1, 0.3 ± 0.13, 0.41 ± 0.2, 1.59 

± 1.02, -0.08 ± 0.17, and 0.99 ± 0.01, respectively.  

We depict an example of 3D rendered volumes of 

segmentation of lesion segmentation in Figure 1 for different 

frameworks of CeBa (yellow),  FedAvg (purple), and Manual 

(red). Figure 2 represents 2D axial views of different patients 

(magnified to enter manual segmentation for better 

visualization). As depicted in these figures, the segmentation 

provided by different frameworks agrees with manual 

segmentation. 
 

 
 

Fig 1. Example of 3D rendered volumes of prostate lesions 

segmentation. CeBa (yellow),  FedAvg (purple), and Manual (red). 

 
Fig 2. Example of 2D slices showing segmentation of prostate 

lesions. Red: manual segmentation, green: CeBa, and yellow: 

FedAvg 

IV. DISCUSSION AND CONCLUSION 

Large and heterogenous medial images from different centers 

using different scanners, acquisition, and reconstruction is 

essential for robust and generalizable DL modeling. Collecting 

this large and heterogenous data requires collaboration 

between different centers, which is limited because of the 

sensitive nature of the medical dataset and legal and ethical 

problems. FL allows us to develop DL models in a 

decentralized and distributed manner in which data of patients 

will keep in each center. We set out to develop a DL-based 

automated algorithm capable of segmenting intra-prostatic 

lesions using T2W MR images. Due to the complex structure 

and low-contrast nature of the intraprostatic lesion in T2W 

MR images, our proposed algorithm performed very well 

compared to manual segmentation across different centers. 
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