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Abstract—In this paper, we present a new approach to model a
printing-imaging channel using a machine learning-based “digital
twin” for copy detection patterns (CDP). The CDP are considered
as modern anti-counterfeiting features in multiple applications.
Our digital twin is formulated within the information-theoretic
framework of TURBO initially developed for high energy physics
simulations, using variational approximations of mutual informa-
tion for both encoder and decoder in the bidirectional exchange
of information. This model extends various architectural designs,
including paired pix2pix and unpaired CycleGAN, for image-to-
image translation. Applicable to any type of printing and imaging
devices, the model needs only training data comprising digital
templates sent to a printing device and data acquired by an imag-
ing device. The data can be paired, unpaired, or hybrid, ensuring
architectural flexibility and scalability for multiple practical
setups. We explore the influence of various architectural factors,
metrics, and discriminators on the overall system’s performance
in generating and predicting printed CDP from their digital
versions and vice versa. We also performed a comparison with
several state-of-the-art methods for image-to-image translation
applications. The simulation code and extended results are pub-
licly available at https://gitlab.unige.ch/sip-group/digital-twin.

Index Terms—Copy detection patterns, machine learning, dig-
ital twin, information theory, variational approximation.

I. INTRODUCTION

In recent years copy detection patterns (CDP) [1], [2]
attracted a lot of attention as a digital and machine-readable
anti-counterfeiting technology. The CDP are broadly used
for the anti-counterfeiting protection of product packaging,
secure labels and documents. At the same time, a great deal
of research has recently been carried out into the various
factors influencing the accuracy of CDP authentication [3]–
[16] and source attribution of printed documents [17]. To
study the performance of CDP-based authentication, access to
training and test sets of sufficient size and diversity to transfer
academic research to an industrial level is required. However,
the production of datasets of real CDP is a costly and time
consuming process. It requires the printing and acquisition
of original CDP and the production and acquisition of fakes,
preferably on equipment close to the industrial one. Thus, the
cost, time and needed deep domain knowledge considerably
limit the study of the anti-counterfeiting aspects of CDP.
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A possible solution to reduce time and cost would be to
develop a mathematical model of the printing and imaging
channel. Nevertheless, the development of such model requires
a lot of domain knowledge for each specific case. This, in
turn, decreases the scalability of the system to new products,
production technologies, and imaging devices, making the
optimization process difficult, time-consuming, and expensive.
Furthermore, even in the hypothetical scenario where such
accurate models could be developed, the non-differentiable
nature of these models could impose limitations on the op-
timization of CDP-based authentication systems.

It should be pointed out that the knowledge of the physical
printing-imaging channel plays a very important role in anti-
counterfeiting systems and is crucial for both the defender
and the attacker. On the side of the defender, the knowledge
of a model for this printing-imaging channel can: (a) enable
the overall optimisation of the whole authentication system
by end-to-end training of CDP generation, printing, imaging
and authentication decoders and decision making, (b) simulate
and predict the intra-class variabilities and (c) help generate
synthetic samples of both originals and fakes that can be used
to efficiently train authentication modules (classifiers).

The attacker can also benefit from such a model by: (a)
optimising the estimation of digital templates from the phys-
ical samples in the scope of copy attacks and (b) developing
adversarial samples for the physical domain.

At the same time, the design of digital twins of printing-
imaging channels is not a trivial task. To simplify it somehow,
one can consider printing and imaging systems separately.

Besides some works [18]–[20] addressing the physics of
specific production systems, there is no generalized theory on
how to model even straightforward printing systems charac-
terized by a high level of stochasticity and nonlinearity. The
printing process model of each printing technology, such as
off-set, digital off-set, inkjet or flexo, representing the most
significant interest for practical applications, is very complex
and domain-specific. Moreover, such a model should consider
not only hardware but also software particularities of drivers
that significantly impact the printing outcome. Altogether,
it requires a lot of domain-specific know-how and makes
the model development for each printing system very time-
consuming. Furthermore, the validation of the model is also
expensive and might require tuning many parameters.
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Fig. 1. Physical printing-imaging channel and its digital twin counterpart. In physical channel, a digital template z is reproduced on surface of a digital
object in a form of CDP by an industrial printer. An imaging device represented by an end-user phone acquires an image of CDP x. The acquired image
is a degraded version of z. The digital twin of the printing-imaging channel replaces a complex printing-imaging system by deep neural architectures thus
allowing to estimate the CDP x̃ from the template z in the direct consideration and vice versa in the inverse.

Reference templates

Probe CDP

<latexit sha1_base64="RW0EtNB6Ejjae0QmvEojAfzMwTM=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsLtRGDNpYRzAckR9jb7CVL9naP3T0xHPkZNhaKpPV/2NuI/8a9JIUmPhh4vDfDvJkw4Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+uZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EQ5ucr/xQJVmUtybYUKDGPcEixjBxkqtdoxNP4yyx5HbKZa8sjcBWiT+jJSuPtzLZPzlVjvFz3ZXkjSmwhCOtW75XmKCDCvDCKcjt51qmmAywD3aslTgmOogm0QeoWOrdFEklS1h0ET9PZHhWOthHNrOPKKe93LxP6+VmugiyJhIUkMFmS6KUo6MRPn9qMsUJYYPLcFEMZsVkT5WmBj7pfwJ/vzJi6R+WvbPyv6dV6pcwxQFOIQjOAEfzqECt1CFGhCQ8AQv8OoY59l5c8bT1iVnNnMAf+C8/wCXI5Rz</latexit>x

Original object

Phone

Fake 
production

Faked object

Authentication

<latexit sha1_base64="M+/goJq3+dFlAZuMmwAHEQaoDTA=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kknx61jw4rGCaQttKJvtpF262YTdjRBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/lo8hSDmA4ljzijxkp+L4xI3q9U3Zo7B1klXkGqUKDZr3z1BgnLYpSGCap113NTE0yoMpwJnJZ7mcaUsjEdYtdSSWPUwWR+7JScW2VAokTZkobM1d8TExprnceh7YypGellbyb+53UzE90GEy7TzKBki0VRJohJyOxzMuAKmRG5JZQpbm8lbEQVZcbmU7YheMsvr5JWveZd164eLquNehFHCU7hDC7AgxtowD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx9oiI5j</latexit>y
<latexit sha1_base64="15j0WQDC4c3sQTPB/tYJX7kjqlE=">AAAB73icbVA9T8MwED2Xr1K+CowsFi0SU5V0AMYKFsYi0Q+pjSrHdVqrjhNsB6lE/RMsDCDEyt9h49/gtBmg5UknPb13p7t7fiy4No7zjQpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/cpP5nUemNI/kvZnGzAvJSPKAU2Ks1K32/QA/VUuDcsWpOXPgVeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWCzUj/RLCZ0QkasZ6kkIdNeOr93hs+sMsRBpGxJg+fq74mUhFpPQ992hsSM9bKXif95vcQEV17KZZwYJuliUZAIbCKcPY+HXDFqxNQSQhW3t2I6JopQYyPKQnCXX14l7XrNvai5d/VK4zqPowgncArn4MIlNOAWmtACCgKe4RXe0AN6Qe/oY9FaQPnMMfwB+vwBXLGO3g==</latexit>z

<latexit sha1_base64="/e+1JucIt19MZQOYeDZQhdXlUtI=">AAAB9HicbVDJSgNBEO2JW4xb1KOXxiB4CjPB7Rjw4jGCWSAZQk9PTdKkZ7G7JhiGfIcXD4p49WO8+Td2kjlo4oOCx3tVVNXzEik02va3VVhb39jcKm6Xdnb39g/Kh0ctHaeKQ5PHMlYdj2mQIoImCpTQSRSw0JPQ9ka3M789BqVFHD3gJAE3ZINIBIIzNJLbQyF9yHpeQJ+m/XLFrtpz0FXi5KRCcjT65a+eH/M0hAi5ZFp3HTtBN2MKBZcwLfVSDQnjIzaArqERC0G72fzoKT0zik+DWJmKkM7V3xMZC7WehJ7pDBkO9bI3E//zuikGN24moiRFiPhiUZBKijGdJUB9oYCjnBjCuBLmVsqHTDGOJqeSCcFZfnmVtGpV56p6eX9RqdfyOIrkhJySc+KQa1Ind6RBmoSTR/JMXsmbNbZerHfrY9FasPKZY/IH1ucP0UGSGA==</latexit>

x̃

Original

Fake

<latexit sha1_base64="BrVMmtpwsQ9tCchLyE+x10cwhlI=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWaKr2XBTZcV7APasWTSTBuayQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JPjx4Jr4zjfqLC2vrG5Vdwu7ezu7R+UD4/aOkoUZS0aiUh1faKZ4JK1DDeCdWPFSOgL1vEnt5nfeWRK80jem2nMvJCMJA84JcZKD2k/JGZMicCN2cAZlCtO1ZkDrxI3JxXI0RyUv/rDiCYhk4YKonXPdWLjpUQZTgWblfqJZjGhEzJiPUslCZn20nnqGT6zyhAHkbJPGjxXf2+kJNR6Gvp2Mgupl71M/M/rJSa48VIu48QwSReHgkRgE+GsAjzkilEjppYQqrjNiumYKEKNLapkS3CXv7xK2rWqe1W9vLuo1Gt5HUU4gVM4BxeuoQ4NaEILKCh4hld4Q0/oBb2jj8VoAeU7x/AH6PMH/7iSJQ==</latexit>H0

<latexit sha1_base64="ae0kchXiTysacbLcp5AEYLck4g4=">AAAB9XicbVDLSgMxFL2pr1pfVZdugkVwVWaKr2XBTZcV7APasWTSTBuayQxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDgcM693JPjx4Jr4zjfqLC2vrG5Vdwu7ezu7R+UD4/aOkoUZS0aiUh1faKZ4JK1DDeCdWPFSOgL1vEnt5nfeWRK80jem2nMvJCMJA84JcZKD2k/JGZMicCN2cAdlCtO1ZkDrxI3JxXI0RyUv/rDiCYhk4YKonXPdWLjpUQZTgWblfqJZjGhEzJiPUslCZn20nnqGT6zyhAHkbJPGjxXf2+kJNR6Gvp2Mgupl71M/M/rJSa48VIu48QwSReHgkRgE+GsAjzkilEjppYQqrjNiumYKEKNLapkS3CXv7xK2rWqe1W9vLuo1Gt5HUU4gVM4BxeuoQ4NaEILKCh4hld4Q0/oBb2jj8VoAeU7x/AH6PMHAUuSJg==</latexit>H1

Fig. 2. Authentication protocol based on CDP. A counterfeiter aims at producing faked objects as close as possible to the original ones. It also concerns the
reproduction of CDP. The verifier acquires a probe CDP y from an object presented for the authentication which can be an original object or faked one. The
authentication compares the correspondence of statistics of probe y with those of digital template z, physical template x or synthetically generated template
x̃ and makes the decision whether the object under the authentication is original (hypothesis H1) or fake (hypothesis H0).

Modeling the acquisition and imaging process is no less
important. Besides some remarkable exceptions [21], [22] that
present the models of noise in the CCD and CMOS imaging
devices and practical methodologies of their validation, the
simulation of the interaction between the incident light and
reflecting object surface is not a trivial task [23]. The imaging
device hardware components and drivers’ settings such as type
of sensor, resolution of sensors, optics, ISO, shutter time,
denoising, white color balancing, compression, etc., greatly
impact the output image features. Finally, similarly to the
models of production systems, there is no guarantee that the
imaging model will be interpretable and differentiable and thus
suitable for the envisioned optimization tasks.

In this paper, we aim at addressing these challenges and
shortcomings based on a machine-learning framework and
introduce a concept of digital twins of complex printing-
imaging systems. More specifically, we propose a digital twin
system that simulates the entire chain from the digital template
z to the acquired image of CDP x. The proposed system is
based on an auto-encoder (AE) structure.

The framework of digital twins might be used as a simulator
of complex physical printing-imaging systems for:

• creation of differentiable models for the investigation of
unexplored adversarial attacks in the physical world;

• generation of synthetic samples of original and fake CDP
to train corresponding classifiers even when no fakes are
known in advance by using synthetic samples as fakes;

• generation of synthetic physical templates for authenti-
cation as opposed to the authentication based on real
physical templates;

• creation of augmentations for self-supervised learning
(SSL) methods;

• investigation of variability and estimation of uncertainty
in printing-imaging systems.

The current work is an extension of our previous exper-
imental work [24] that demonstrated a proof of concept on
a limited data set of CDP acquired by a scanner. The main
contributions of the present work are:

• the complete information-theoretic problem formulation
of printing-imaging digital twin based on the TURBO
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<latexit sha1_base64="cH25w50cAYB92TmO8vjiJpGu3kc=">AAACD3icbVC7TsNAEDzzDOFloKQ5kYBCE9kpgDKChjJI5CEllnW+nJNTzg/drRHB+A9o+BUaChCipaXjb7ATI0HCSCfNzexqd8cJBVdgGF/awuLS8spqYa24vrG5ta3v7LZUEEnKmjQQgew4RDHBfdYEDoJ1QsmI5wjWdkYXmd++YVLxwL+Gccgsjwx87nJKIJVs/agc2nEPhgxIUul5BIaOG98m+B7/fO6S43LR1ktG1ZgAzxMzJyWUo2Hrn71+QCOP+UAFUaprGiFYMZHAqWBJsRcpFhI6IgPWTalPPKaseHJPgg9TpY/dQKbPBzxRf3fExFNq7DlpZbakmvUy8T+vG4F7ZsXcDyNgPp0OciOBIcBZOLjPJaMgxikhVPJ0V0yHRBIKaYRZCObsyfOkVauaJ1Xzqlaqn+dxFNA+OkAVZKJTVEeXqIGaiKIH9IRe0Kv2qD1rb9r7tHRBy3v20B9oH99vKZxB</latexit>

p✓(x|z)<latexit sha1_base64="RW0EtNB6Ejjae0QmvEojAfzMwTM=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsLtRGDNpYRzAckR9jb7CVL9naP3T0xHPkZNhaKpPV/2NuI/8a9JIUmPhh4vDfDvJkw4Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+uZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EQ5ucr/xQJVmUtybYUKDGPcEixjBxkqtdoxNP4yyx5HbKZa8sjcBWiT+jJSuPtzLZPzlVjvFz3ZXkjSmwhCOtW75XmKCDCvDCKcjt51qmmAywD3aslTgmOogm0QeoWOrdFEklS1h0ET9PZHhWOthHNrOPKKe93LxP6+VmugiyJhIUkMFmS6KUo6MRPn9qMsUJYYPLcFEMZsVkT5WmBj7pfwJ/vzJi6R+WvbPyv6dV6pcwxQFOIQjOAEfzqECt1CFGhCQ8AQv8OoY59l5c8bT1iVnNnMAf+C8/wCXI5Rz</latexit>x
<latexit sha1_base64="Nkr+YHXxJhrM4e2sjOUTGL+NPOI=">AAACC3icbVC7TsMwFHXKq7Q8AowsVgtSWaqEARgrWBiLRB9SU0WO67RWnQe2U1FCdhZ+hQUJEGJD/AAbHwIzTlskaDmSpeNz7tW99zgho0IaxoeWmZtfWFzKLufyK6tr6/rGZl0EEcekhgMW8KaDBGHUJzVJJSPNkBPkOYw0nP5J6jcGhAsa+OdyGJK2h7o+dSlGUkm2XriwYyvs0aRkeUj2HDe+SuA1/PlcJns5Wy8aZWMEOEvMCSlWdj4fXgf5r6qtv1udAEce8SVmSIiWaYSyHSMuKWYkyVmRICHCfdQlLUV95BHRjke3JHBXKR3oBlw9X8KR+rsjRp4QQ89RlemOYtpLxf+8ViTdo3ZM/TCSxMfjQW7EoAxgGgzsUE6wZENFEOZU7QpxD3GEpYovDcGcPnmW1PfL5kHZPFNpHIMxsmAbFEAJmOAQVMApqIIawOAG3IFH8KTdavfas/YyLs1ok54t8Afa2ze+Op9E</latexit>

q�(z|x)
<latexit sha1_base64="gCeTftFJOXIWVj7m0m8v7c3aYQE=">AAAB9HicbVBNS8NAEN34WeNX1aOXxSJ4KokH9SIWvXisYD+gDWWzmbRLN5u4uynU0N/hxYNSvPo3vHsR/42btgdtfTDweG+GmXl+wpnSjvNtLS2vrK6tFzbsza3tnd3i3n5dxamkUKMxj2XTJwo4E1DTTHNoJhJI5HNo+P2b3G8MQCoWi3s9TMCLSFewkFGijeS1/RC3NeMB4Ee7Uyw5ZWcCvEjcGSldfdiXyfjLrnaKn+0gpmkEQlNOlGq5TqK9jEjNKIeR3U4VJIT2SRdahgoSgfKyydEjfGyUAIexNCU0nqi/JzISKTWMfNMZEd1T814u/ue1Uh1eeBkTSapB0OmiMOVYxzhPAAdMAtV8aAihkplbMe0RSag2OeUhuPMvL5L6adk9K7t3TqlyjaYooEN0hE6Qi85RBd2iKqohih7QE3pBr9bAerbG1tu0dcmazRygP7DefwD7lZSV</latexit>

z̃

<latexit sha1_base64="15j0WQDC4c3sQTPB/tYJX7kjqlE=">AAAB73icbVA9T8MwED2Xr1K+CowsFi0SU5V0AMYKFsYi0Q+pjSrHdVqrjhNsB6lE/RMsDCDEyt9h49/gtBmg5UknPb13p7t7fiy4No7zjQpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/cpP5nUemNI/kvZnGzAvJSPKAU2Ks1K32/QA/VUuDcsWpOXPgVeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWCzUj/RLCZ0QkasZ6kkIdNeOr93hs+sMsRBpGxJg+fq74mUhFpPQ992hsSM9bKXif95vcQEV17KZZwYJuliUZAIbCKcPY+HXDFqxNQSQhW3t2I6JopQYyPKQnCXX14l7XrNvai5d/VK4zqPowgncArn4MIlNOAWmtACCgKe4RXe0AN6Qe/oY9FaQPnMMfwB+vwBXLGO3g==</latexit>z

<latexit sha1_base64="DG+jHQ7fDUFuGLLLTP//fizZoFk=">AAAB8nicbZDLSsNAFIYnXmu8VV26GSyCq5K4UDdi0Y3LCvYCSSiT6aQdOpmEmROxhD6GGxeKdOt7uHcjvo2Ttgtt/WHg4//PYc45YSq4Bsf5tpaWV1bX1ksb9ubW9s5ueW+/qZNMUdagiUhUOySaCS5ZAzgI1k4VI3EoWCsc3BR564EpzRN5D8OUBTHpSR5xSsBYnh9G2O8TwI92p1xxqs5EeBHcGVSuPuzLdPxl1zvlT7+b0CxmEqggWnuuk0KQEwWcCjay/UyzlNAB6THPoCQx00E+GXmEj43TxVGizJOAJ+7vjpzEWg/j0FTGBPp6PivM/zIvg+giyLlMM2CSTj+KMoEhwcX+uMsVoyCGBghV3MyKaZ8oQsFcqTiCO7/yIjRPq+5Z1b1zKrVrNFUJHaIjdIJcdI5q6BbVUQNRlKAn9IJeLbCerTdrPC1dsmY9B+iPrPcfYuGTqg==</latexit>

x̂

<latexit sha1_base64="15j0WQDC4c3sQTPB/tYJX7kjqlE=">AAAB73icbVA9T8MwED2Xr1K+CowsFi0SU5V0AMYKFsYi0Q+pjSrHdVqrjhNsB6lE/RMsDCDEyt9h49/gtBmg5UknPb13p7t7fiy4No7zjQpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/cpP5nUemNI/kvZnGzAvJSPKAU2Ks1K32/QA/VUuDcsWpOXPgVeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWCzUj/RLCZ0QkasZ6kkIdNeOr93hs+sMsRBpGxJg+fq74mUhFpPQ992hsSM9bKXif95vcQEV17KZZwYJuliUZAIbCKcPY+HXDFqxNQSQhW3t2I6JopQYyPKQnCXX14l7XrNvai5d/VK4zqPowgncArn4MIlNOAWmtACCgKe4RXe0AN6Qe/oY9FaQPnMMfwB+vwBXLGO3g==</latexit>z

<latexit sha1_base64="RW0EtNB6Ejjae0QmvEojAfzMwTM=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsLtRGDNpYRzAckR9jb7CVL9naP3T0xHPkZNhaKpPV/2NuI/8a9JIUmPhh4vDfDvJkw4Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+uZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EQ5ucr/xQJVmUtybYUKDGPcEixjBxkqtdoxNP4yyx5HbKZa8sjcBWiT+jJSuPtzLZPzlVjvFz3ZXkjSmwhCOtW75XmKCDCvDCKcjt51qmmAywD3aslTgmOogm0QeoWOrdFEklS1h0ET9PZHhWOthHNrOPKKe93LxP6+VmugiyJhIUkMFmS6KUo6MRPn9qMsUJYYPLcFEMZsVkT5WmBj7pfwJ/vzJi6R+WvbPyv6dV6pcwxQFOIQjOAEfzqECt1CFGhCQ8AQv8OoY59l5c8bT1iVnNnMAf+C8/wCXI5Rz</latexit>x

<latexit sha1_base64="n5TmsMRhz8n7vxajRlBnAlq5r88=">AAACBXicbVDLSsNAFJ34rPUVdamL0CJUhJK4UJdFNy4r2Ac0IUymk3bo5MHMjRhCNm78AT/CjQtF3PoP7vo3TtoutPXAhcM593LvPV7MmQTTHGtLyyura+uljfLm1vbOrr6335ZRIghtkYhHouthSTkLaQsYcNqNBcWBx2nHG10XfueeCsmi8A7SmDoBHoTMZwSDklz9yB5iyOLczWwYUsB5zQ4wDD0/e8hPXL1q1s0JjEVizUi1UbFPn8eNtOnq33Y/IklAQyAcS9mzzBicDAtghNO8bCeSxpiM8ID2FA1xQKWTTb7IjWOl9A0/EqpCMCbq74kMB1Kmgac6ixPlvFeI/3m9BPxLJ2NhnAANyXSRn3ADIqOIxOgzQQnwVBFMBFO3GmSIBSaggiurEKz5lxdJ+6xundetW5XGFZqihA5RBdWQhS5QA92gJmohgh7RC3pD79qT9qp9aJ/T1iVtNnOA/kD7+gF9M5wt</latexit>

p̂✓(x)
<latexit sha1_base64="vb0XUFt2C00z9n7bXT1meIHtaRs=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwtQkUpiQt1WXTjsoK9QBPKZDpph04mYWYixlDc+Ai+ghsXirj1Kdz1bZy0FbT1h4GP/5zDnPN7EaNSWdbIyC0sLi2v5FcLa+sbm1vm9k5DhrHApI5DFoqWhyRhlJO6ooqRViQICjxGmt7gMqs3b4mQNOQ3KomIG6Aepz7FSGmrY+5FZSdAqu/56d3wGP7w/fCwY5asijUWnAd7CqVq0Tl6GlWTWsf8crohjgPCFWZIyrZtRcpNkVAUMzIsOLEkEcID1CNtjRwFRLrp+IQhPNBOF/qh0I8rOHZ/T6QokDIJPN2ZrShna5n5X60dK//cTSmPYkU4nnzkxwyqEGZ5wC4VBCuWaEBYUL0rxH0kEFY6tYIOwZ49eR4aJxX7tGJf6zQuwER5sA+KoAxscAaq4ArUQB1g8ACewSt4Mx6NF+Pd+Ji05ozpzC74I+PzGyaMmkE=</latexit>

p(x, z)

Direct path

<latexit sha1_base64="KbxYwhF8BaaXSc3bsMgwFLUb/Ws=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUlipBvMYKFsYi0YfURJHjOq1Vxwm2g1SiDCz8CgsDCLHyEWz8DU6bAVqOdKWjc+7Vvff4MaNSWda3UVpaXlldK69XNja3tnfM3b2OjBKBSRtHLBI9H0nCKCdtRRUjvVgQFPqMdP3xVe5374mQNOK3ahITN0RDTgOKkdKSZ1ZTR1E2IPAu85x4ROtOiNTID9KH7Mgza1bDmgIuErsgNVCg5ZlfziDCSUi4wgxJ2betWLkpEopiRrKKk0gSIzxGQ9LXlKOQSDedPpHBQ60MYBAJXVzBqfp7IkWhlJPQ1535iXLey8X/vH6iggs3pTxOFOF4tihIGFQRzBOBAyoIVmyiCcKC6lshHiGBsNK5VXQI9vzLi6Rz3LDPGqc3J7XmZRFHGVTBAagDG5yDJrgGLdAGGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gDpTZhH</latexit>

q̃�(z)

<latexit sha1_base64="50hbYZEi6ygBEf6QXr7chsugfGE=">AAACA3icbZDLSsNAFIZP6q3WW9SdboJFqJuSiLdl0Y3LCvYCbSiT6aQdOpmEmYlYQsCNr+LGhSJufQl3vo2TNqC2/jDw8Z9zmHN+L2JUKtv+MgoLi0vLK8XV0tr6xuaWub3TlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3usrqrTsiJA35rRpHxA3QgFOfYqS01TP3ol7SDZAaen5yn6aVHz7qmWW7ak9kzYOTQxly1XvmZ7cf4jggXGGGpOw4dqTcBAlFMSNpqRtLEiE8QgPS0chRQKSbTG5IrUPt9C0/FPpxZU3c3xMJCqQcB57uzFaUs7XM/K/WiZV/4SaUR7EiHE8/8mNmqdDKArH6VBCs2FgDwoLqXS08RAJhpWMr6RCc2ZPnoXlcdc6qpzcn5dplHkcR9uEAKuDAOdTgGurQAAwP8AQv8Go8Gs/Gm/E+bS0Y+cwu/JHx8Q3Y/phN</latexit>

px(x)

<latexit sha1_base64="CIv3s91Qwrk0GQM+zcKiiGDFREE=">AAACA3icbZDLSsNAFIZP6q3WW9SdboJFqJuSiLdl0Y3LCvYCbSiT6aQdOpmEmYlQQ8CNr+LGhSJufQl3vo2TNqC2/jDw8Z9zmHN+L2JUKtv+MgoLi0vLK8XV0tr6xuaWub3TlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3usrqrTsiJA35rRpHxA3QgFOfYqS01TP3ol7SDZAaen5yn6aVHz7qmWW7ak9kzYOTQxly1XvmZ7cf4jggXGGGpOw4dqTcBAlFMSNpqRtLEiE8QgPS0chRQKSbTG5IrUPt9C0/FPpxZU3c3xMJCqQcB57uzFaUs7XM/K/WiZV/4SaUR7EiHE8/8mNmqdDKArH6VBCs2FgDwoLqXS08RAJhpWMr6RCc2ZPnoXlcdc6qpzcn5dplHkcR9uEAKuDAOdTgGurQAAwP8AQv8Go8Gs/Gm/E+bS0Y+cwu/JHx8Q3fLphR</latexit>

pz(z)

<latexit sha1_base64="cH25w50cAYB92TmO8vjiJpGu3kc=">AAACD3icbVC7TsNAEDzzDOFloKQ5kYBCE9kpgDKChjJI5CEllnW+nJNTzg/drRHB+A9o+BUaChCipaXjb7ATI0HCSCfNzexqd8cJBVdgGF/awuLS8spqYa24vrG5ta3v7LZUEEnKmjQQgew4RDHBfdYEDoJ1QsmI5wjWdkYXmd++YVLxwL+Gccgsjwx87nJKIJVs/agc2nEPhgxIUul5BIaOG98m+B7/fO6S43LR1ktG1ZgAzxMzJyWUo2Hrn71+QCOP+UAFUaprGiFYMZHAqWBJsRcpFhI6IgPWTalPPKaseHJPgg9TpY/dQKbPBzxRf3fExFNq7DlpZbakmvUy8T+vG4F7ZsXcDyNgPp0OciOBIcBZOLjPJaMgxikhVPJ0V0yHRBIKaYRZCObsyfOkVauaJ1Xzqlaqn+dxFNA+OkAVZKJTVEeXqIGaiKIH9IRe0Kv2qD1rb9r7tHRBy3v20B9oH99vKZxB</latexit>

p✓(x|z)

<latexit sha1_base64="RW0EtNB6Ejjae0QmvEojAfzMwTM=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsLtRGDNpYRzAckR9jb7CVL9naP3T0xHPkZNhaKpPV/2NuI/8a9JIUmPhh4vDfDvJkw4Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+uZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EQ5ucr/xQJVmUtybYUKDGPcEixjBxkqtdoxNP4yyx5HbKZa8sjcBWiT+jJSuPtzLZPzlVjvFz3ZXkjSmwhCOtW75XmKCDCvDCKcjt51qmmAywD3aslTgmOogm0QeoWOrdFEklS1h0ET9PZHhWOthHNrOPKKe93LxP6+VmugiyJhIUkMFmS6KUo6MRPn9qMsUJYYPLcFEMZsVkT5WmBj7pfwJ/vzJi6R+WvbPyv6dV6pcwxQFOIQjOAEfzqECt1CFGhCQ8AQv8OoY59l5c8bT1iVnNnMAf+C8/wCXI5Rz</latexit>x

<latexit sha1_base64="Nkr+YHXxJhrM4e2sjOUTGL+NPOI=">AAACC3icbVC7TsMwFHXKq7Q8AowsVgtSWaqEARgrWBiLRB9SU0WO67RWnQe2U1FCdhZ+hQUJEGJD/AAbHwIzTlskaDmSpeNz7tW99zgho0IaxoeWmZtfWFzKLufyK6tr6/rGZl0EEcekhgMW8KaDBGHUJzVJJSPNkBPkOYw0nP5J6jcGhAsa+OdyGJK2h7o+dSlGUkm2XriwYyvs0aRkeUj2HDe+SuA1/PlcJns5Wy8aZWMEOEvMCSlWdj4fXgf5r6qtv1udAEce8SVmSIiWaYSyHSMuKWYkyVmRICHCfdQlLUV95BHRjke3JHBXKR3oBlw9X8KR+rsjRp4QQ89RlemOYtpLxf+8ViTdo3ZM/TCSxMfjQW7EoAxgGgzsUE6wZENFEOZU7QpxD3GEpYovDcGcPnmW1PfL5kHZPFNpHIMxsmAbFEAJmOAQVMApqIIawOAG3IFH8KTdavfas/YyLs1ok54t8Afa2ze+Op9E</latexit>

q�(z|x)<latexit sha1_base64="15j0WQDC4c3sQTPB/tYJX7kjqlE=">AAAB73icbVA9T8MwED2Xr1K+CowsFi0SU5V0AMYKFsYi0Q+pjSrHdVqrjhNsB6lE/RMsDCDEyt9h49/gtBmg5UknPb13p7t7fiy4No7zjQpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/cpP5nUemNI/kvZnGzAvJSPKAU2Ks1K32/QA/VUuDcsWpOXPgVeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWCzUj/RLCZ0QkasZ6kkIdNeOr93hs+sMsRBpGxJg+fq74mUhFpPQ992hsSM9bKXif95vcQEV17KZZwYJuliUZAIbCKcPY+HXDFqxNQSQhW3t2I6JopQYyPKQnCXX14l7XrNvai5d/VK4zqPowgncArn4MIlNOAWmtACCgKe4RXe0AN6Qe/oY9FaQPnMMfwB+vwBXLGO3g==</latexit>z

<latexit sha1_base64="15j0WQDC4c3sQTPB/tYJX7kjqlE=">AAAB73icbVA9T8MwED2Xr1K+CowsFi0SU5V0AMYKFsYi0Q+pjSrHdVqrjhNsB6lE/RMsDCDEyt9h49/gtBmg5UknPb13p7t7fiy4No7zjQpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYhU1yeaCS5Zy3AjWDdWjIS+YB1/cpP5nUemNI/kvZnGzAvJSPKAU2Ks1K32/QA/VUuDcsWpOXPgVeLmpAI5moPyV38Y0SRk0lBBtO65Tmy8lCjDqWCzUj/RLCZ0QkasZ6kkIdNeOr93hs+sMsRBpGxJg+fq74mUhFpPQ992hsSM9bKXif95vcQEV17KZZwYJuliUZAIbCKcPY+HXDFqxNQSQhW3t2I6JopQYyPKQnCXX14l7XrNvai5d/VK4zqPowgncArn4MIlNOAWmtACCgKe4RXe0AN6Qe/oY9FaQPnMMfwB+vwBXLGO3g==</latexit>z

<latexit sha1_base64="RW0EtNB6Ejjae0QmvEojAfzMwTM=">AAAB8nicbVA9SwNBEJ3zM55fUUubxSBYhTsLtRGDNpYRzAckR9jb7CVL9naP3T0xHPkZNhaKpPV/2NuI/8a9JIUmPhh4vDfDvJkw4Uwbz/t2lpZXVtfWCxvu5tb2zm5xb7+uZaoIrRHJpWqGWFPOBK0ZZjhtJoriOOS0EQ5ucr/xQJVmUtybYUKDGPcEixjBxkqtdoxNP4yyx5HbKZa8sjcBWiT+jJSuPtzLZPzlVjvFz3ZXkjSmwhCOtW75XmKCDCvDCKcjt51qmmAywD3aslTgmOogm0QeoWOrdFEklS1h0ET9PZHhWOthHNrOPKKe93LxP6+VmugiyJhIUkMFmS6KUo6MRPn9qMsUJYYPLcFEMZsVkT5WmBj7pfwJ/vzJi6R+WvbPyv6dV6pcwxQFOIQjOAEfzqECt1CFGhCQ8AQv8OoY59l5c8bT1iVnNnMAf+C8/wCXI5Rz</latexit>x

<latexit sha1_base64="IxJTjH079KMULZuB38tkFlzwUyg=">AAAB9HicbVBNS8NAEJ34WeNX1aOXxSJ4KokH9SIWvXisYD+gDWWz2bRLN5u4uymW0N/hxYNSvPo3vHsR/42btgdtfTDweG+GmXl+wpnSjvNtLS2vrK6tFzbsza3tnd3i3n5dxakktEZiHsumjxXlTNCaZprTZiIpjnxOG37/JvcbAyoVi8W9HibUi3BXsJARrI3ktf0QtTXjAUWPdqdYcsrOBGiRuDNSuvqwL5Pxl13tFD/bQUzSiApNOFaq5TqJ9jIsNSOcjux2qmiCSR93actQgSOqvGxy9AgdGyVAYSxNCY0m6u+JDEdKDSPfdEZY99S8l4v/ea1UhxdexkSSairIdFGYcqRjlCeAAiYp0XxoCCaSmVsR6WGJiTY55SG48y8vkvpp2T0ru3dOqXINUxTgEI7gBFw4hwrcQhVqQOABnuAFXq2B9WyNrbdp65I1mzmAP7DefwD4i5ST</latexit>

x̃
<latexit sha1_base64="cvUIHyFWe1Jmgk0lAqhIH1LEGPs=">AAAB+XicbVDLSsNAFL2prxpfUZdugkVwVRIX6kYsunFZwT6gCWUynbRDJ5MwMynUkD9xI6KIWz/CvRvxb5y0XWjrgYHDOfdyz5wgYVQqx/k2SkvLK6tr5XVzY3Nre8fa3WvKOBWYNHDMYtEOkCSMctJQVDHSTgRBUcBIKxheF35rRISkMb9T44T4EepzGlKMlJa6luUNkMq8CKlBEGb3ed61Kk7VmcBeJO6MVC4/zIvk6cusd61PrxfjNCJcYYak7LhOovwMCUUxI7nppZIkCA9Rn3Q05Sgi0s8myXP7SCs9O4yFflzZE/X3RoYiKcdRoCeLiHLeK8T/vE6qwnM/ozxJFeF4eihMma1iu6jB7lFBsGJjTRAWVGe18QAJhJUuy9QluPNfXiTNk6p7WnVvnUrtCqYowwEcwjG4cAY1uIE6NADDCB7gGV6MzHg0Xo236WjJmO3swx8Y7z+6kJdf</latexit>

ẑ

<latexit sha1_base64="EZRTrP9DdU2BBWtzEheea/wLi2s=">AAACA3icbVC7TsNAEDzzDAkPAx00JwJSaCKbAigjaCiDRB5SbFnnyzk+5fzg7hwpWJZo+BUaChBCdFT8AR0fAjXnJAUkjLTSaGZXuztuzKiQhvGpzc0vLC4tF1aKpdW19Q19c6spooRj0sARi3jbRYIwGpKGpJKRdswJClxGWm7/PPdbA8IFjcIrOYyJHaBeSD2KkVSSo+9YPpLpdeakVuzTrGIFSPqul95kh45eNqrGCHCWmBNSru1/vb4PSt91R/+wuhFOAhJKzJAQHdOIpZ0iLilmJCtaiSAxwn3UIx1FQxQQYaejHzJ4oJQu9CKuKpRwpP6eSFEgxDBwVWd+opj2cvE/r5NI79ROaRgnkoR4vMhLGJQRzAOBXcoJlmyoCMKcqlsh9hFHWKrYiioEc/rlWdI8qprHVfNSpXEGxiiAXbAHKsAEJ6AGLkAdNAAGt+AePIIn7U570J61l3HrnDaZ2QZ/oL39AIVjnIE=</latexit>

q̂�(z)

Reverse path

<latexit sha1_base64="pBYakeSsa+2SgCWfTdqdePzpUz0=">AAACB3icbVDJSgNBEO1xjXGLehSkMQjxEmbE7Rj04jGCWSATQk+nJmnSs9BdI4YhNy/+ihcPinj1F7z5N/YkOWjig4LHe1VU1fNiKTTa9re1sLi0vLKaW8uvb2xubRd2dus6ShSHGo9kpJoe0yBFCDUUKKEZK2CBJ6HhDa4zv3EPSosovMNhDO2A9ULhC87QSJ3CAU1dFLILNB51XOwDspIbMOx7fvowOu4UinbZHoPOE2dKimSKaqfw5XYjngQQIpdM65Zjx9hOmULBJYzybqIhZnzAetAyNGQB6HY6/mNEj4zSpX6kTIVIx+rviZQFWg8Dz3RmJ+pZLxP/81oJ+pftVIRxghDyySI/kRQjmoVCu0IBRzk0hHElzK2U95liHE10eROCM/vyPKmflJ3z8tntabFyNY0jR/bJISkRh1yQCrkhVVIjnDySZ/JK3qwn68V6tz4mrQvWdGaP/IH1+QPhxJlX</latexit>

p̃✓(x)

<latexit sha1_base64="CIv3s91Qwrk0GQM+zcKiiGDFREE=">AAACA3icbZDLSsNAFIZP6q3WW9SdboJFqJuSiLdl0Y3LCvYCbSiT6aQdOpmEmYlQQ8CNr+LGhSJufQl3vo2TNqC2/jDw8Z9zmHN+L2JUKtv+MgoLi0vLK8XV0tr6xuaWub3TlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3usrqrTsiJA35rRpHxA3QgFOfYqS01TP3ol7SDZAaen5yn6aVHz7qmWW7ak9kzYOTQxly1XvmZ7cf4jggXGGGpOw4dqTcBAlFMSNpqRtLEiE8QgPS0chRQKSbTG5IrUPt9C0/FPpxZU3c3xMJCqQcB57uzFaUs7XM/K/WiZV/4SaUR7EiHE8/8mNmqdDKArH6VBCs2FgDwoLqXS08RAJhpWMr6RCc2ZPnoXlcdc6qpzcn5dplHkcR9uEAKuDAOdTgGurQAAwP8AQv8Go8Gs/Gm/E+bS0Y+cwu/JHx8Q3fLphR</latexit>

pz(z)

<latexit sha1_base64="50hbYZEi6ygBEf6QXr7chsugfGE=">AAACA3icbZDLSsNAFIZP6q3WW9SdboJFqJuSiLdl0Y3LCvYCbSiT6aQdOpmEmYlYQsCNr+LGhSJufQl3vo2TNqC2/jDw8Z9zmHN+L2JUKtv+MgoLi0vLK8XV0tr6xuaWub3TlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3usrqrTsiJA35rRpHxA3QgFOfYqS01TP3ol7SDZAaen5yn6aVHz7qmWW7ak9kzYOTQxly1XvmZ7cf4jggXGGGpOw4dqTcBAlFMSNpqRtLEiE8QgPS0chRQKSbTG5IrUPt9C0/FPpxZU3c3xMJCqQcB57uzFaUs7XM/K/WiZV/4SaUR7EiHE8/8mNmqdDKArH6VBCs2FgDwoLqXS08RAJhpWMr6RCc2ZPnoXlcdc6qpzcn5dplHkcR9uEAKuDAOdTgGurQAAwP8AQv8Go8Gs/Gm/E+bS0Y+cwu/JHx8Q3Y/phN</latexit>

px(x)

<latexit sha1_base64="vb0XUFt2C00z9n7bXT1meIHtaRs=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwtQkUpiQt1WXTjsoK9QBPKZDpph04mYWYixlDc+Ai+ghsXirj1Kdz1bZy0FbT1h4GP/5zDnPN7EaNSWdbIyC0sLi2v5FcLa+sbm1vm9k5DhrHApI5DFoqWhyRhlJO6ooqRViQICjxGmt7gMqs3b4mQNOQ3KomIG6Aepz7FSGmrY+5FZSdAqu/56d3wGP7w/fCwY5asijUWnAd7CqVq0Tl6GlWTWsf8crohjgPCFWZIyrZtRcpNkVAUMzIsOLEkEcID1CNtjRwFRLrp+IQhPNBOF/qh0I8rOHZ/T6QokDIJPN2ZrShna5n5X60dK//cTSmPYkU4nnzkxwyqEGZ5wC4VBCuWaEBYUL0rxH0kEFY6tYIOwZ49eR4aJxX7tGJf6zQuwER5sA+KoAxscAaq4ArUQB1g8ACewSt4Mx6NF+Pd+Ji05ozpzC74I+PzGyaMmkE=</latexit>

p(x, z)

<latexit sha1_base64="TJ3Ie+56reipLN11NeoQrPfIcrA="></latexit>

Ix
�,✓(X; Z̃)

<latexit sha1_base64="yVua9xR9K/Dm432AfpPTd8N0mOg=">AAACIXicbVDLSgMxFM3UV62vUZdugkWoIGVGfBTcFNzoroJ9YFtLJs20oZkHyR2xDPMrbvwVNy4U6U78GdNpBW09EDg5517uvccJBVdgWZ9GZmFxaXklu5pbW9/Y3DK3d2oqiCRlVRqIQDYcopjgPqsCB8EaoWTEcwSrO4PLsV9/YFLxwL+FYcjaHun53OWUgJY6ZqnlEehTIuLrpNOCPgNyH6ea9OLHJCmk3HHjRoIv8M/nLjnsmHmraKXA88SekjyaotIxR61uQCOP+UAFUappWyG0YyKBU8GSXCtSLCR0QHqsqalPPKbacXphgg+00sVuIPXzAafq746YeEoNPUdXjldUs95Y/M9rRuCW2jH3wwiYTyeD3EhgCPA4LtzlklEQQ00IlVzvimmfSEJBh5rTIdizJ8+T2nHRPiue3pzky0fTOLJoD+2jArLROSqjK1RBVUTRE3pBb+jdeDZejQ9jNCnNGNOeXfQHxtc3ZDqkzA==</latexit>Ix
✓ (X;Z)

<latexit sha1_base64="Ey9w24hYC/Py9lX6EhiywL0ChP8="></latexit>

Iz
�,✓(X̃;Z)

<latexit sha1_base64="cLlGEIjVeAosRGIpd4sCnFIvYXI=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0WoICURX8uCLlxWsA9oQphMJu3QyYOZiVhCfseNv+JGQVG3/oiTNIvaemDg3HPuZe49bsyokIbxpVWWlldW16rrtY3Nre0dfXevK6KEY9LBEYt430WCMBqSjqSSkX7MCQpcRnru+Dr3ew+ECxqF93ISEztAw5D6FCOpJEdvWQGSI4xYepM5qSUp80haaDxIH7MsaxSF66viBM76hZQdO3rdaBoF4CIxS1IHJdqO/mZ5EU4CEkrMkBAD04ilnSIuKWYkq1mJIDHCYzQkA0VDFBBhp8WlGTxSigf9iKsXSliosxMpCoSYBK7qzHcU814u/ucNEulf2SkN40SSEE8/8hMGZQTz2KBHOcGSTRRBmFO1K8QjxBGWKtyaCsGcP3mRdE+b5kXz/O6s3jLKOKrgAByCBjDBJWiBW9AGHYDBE3gB7+BDe9ZetU/te9pa0cqZffAH2s8vdtipJg==</latexit>Dx̃(x, x̃)

<latexit sha1_base64="qNG2N35Wil3DhU1KOTMuvxLcxJc=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0WoICURX8uCGxcuKtgHNCFMJpN26OTBzEQsIb/jxl9xo6CoW3/ESZpFbT0wcO459zL3HjdmVEjD+NIqS8srq2vV9drG5tb2jr671xVRwjHp4IhFvO8iQRgNSUdSyUg/5gQFLiM9d3yd+70HwgWNwns5iYkdoGFIfYqRVJKjt6wAyRFGLL3NnNSSlHkkLTQepI9ZljWKwvVVcQJn/ULKjh29bjSNAnCRmCWpgxJtR3+zvAgnAQklZkiIgWnE0k4RlxQzktWsRJAY4TEakoGiIQqIsNPi0gweKcWDfsTVCyUs1NmJFAVCTAJXdeY7inkvF//zBon0r+yUhnEiSYinH/kJgzKCeWzQo5xgySaKIMyp2hXiEeIISxVuTYVgzp+8SLqnTfOieX53Vm8ZZRxVcAAOQQOY4BK0wA1ogw7A4Am8gHfwoT1rr9qn9j1trWjlzD74A+3nF4SoqS4=</latexit>Lx̃(x, x̃)

<latexit sha1_base64="klEJeWSOvmQEwVNlG5/PKmou8Pk=">AAACKXicbVDLSsNAFJ3UV62vqEs3g0WoICURX8uCLlxWsA9oQphMJu3QyYOZiVBDfseNv+JGQVG3/oiTNIvaemDg3HPuZe49bsyokIbxpVWWlldW16rrtY3Nre0dfXevK6KEY9LBEYt430WCMBqSjqSSkX7MCQpcRnru+Dr3ew+ECxqF93ISEztAw5D6FCOpJEdvWQGSI4xYepM5qSUp80haaDxIH7MsaxSF66viBM76hZQdO3rdaBoF4CIxS1IHJdqO/mZ5EU4CEkrMkBAD04ilnSIuKWYkq1mJIDHCYzQkA0VDFBBhp8WlGTxSigf9iKsXSliosxMpCoSYBK7qzHcU814u/ucNEulf2SkN40SSEE8/8hMGZQTz2KBHOcGSTRRBmFO1K8QjxBGWKtyaCsGcP3mRdE+b5kXz/O6s3jLKOKrgAByCBjDBJWiBW9AGHYDBE3gB7+BDe9ZetU/te9pa0cqZffAH2s8vgGipLA==</latexit>Dz̃(z, z̃)

<latexit sha1_base64="fzNRjZhualmXe7UHnbzUdlDt6ME=">AAACKXicbVDLSsNAFJ34rPUVdelmsAgVSknE17LgxoWLCvYBTQiTyaQdOnkwMxFqyO+48VfcKCjq1h9xkmZRWw8MnHvOvcy9x40ZFdIwvrSl5ZXVtfXKRnVza3tnV9/b74oo4Zh0cMQi3neRIIyGpCOpZKQfc4ICl5GeO77O/d4D4YJG4b2cxMQO0DCkPsVIKsnRW1aA5Agjlt5mTmpJyjySFhoP0scsy+pF4fqqaMBZv5CyE0evGU2jAFwkZklqoETb0d8sL8JJQEKJGRJiYBqxtFPEJcWMZFUrESRGeIyGZKBoiAIi7LS4NIPHSvGgH3H1QgkLdXYiRYEQk8BVnfmOYt7Lxf+8QSL9KzulYZxIEuLpR37CoIxgHhv0KCdYsokiCHOqdoV4hDjCUoVbVSGY8ycvku5p07xont+d1VqNMo4KOARHoA5McAla4Aa0QQdg8ARewDv40J61V+1T+562LmnlzAH4A+3nF40EqTA=</latexit>Lz̃(z, z̃)

<latexit sha1_base64="rY6jTNdBuxuwKgQF2tQ+8NrrUq4=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0WoIiURXwsXBV24rGAf0IQwmU7aoZMHMxOxhPyMG3/FjQuLCK78FSdpQG09MHDuOfcy9x43YlRIw/jUSguLS8sr5dXK2vrG5pa+vdMWYcwxaeGQhbzrIkEYDUhLUslIN+IE+S4jHXd0nfmdB8IFDYN7OY6I7aNBQD2KkVSSo19ZPpJDjFhykzqJNUQyyRXuJ49pmtbywvVUcQx/3FxIDx29atSNHHCemAWpggJNR59Y/RDHPgkkZkiInmlE0k4QlxQzklasWJAI4REakJ6iAfKJsJP8yhQeKKUPvZCrF0iYq78nEuQLMfZd1ZntKGa9TPzP68XSu7QTGkSxJAGefuTFDMoQZpHBPuUESzZWBGFO1a4QDxFHWKpgKyoEc/bkedI+qZvn9bO702rjqIijDPbAPqgBE1yABrgFTdACGDyBF/AGJtqz9qq9ax/T1pJWzOyCP9C+vgHz/qdO</latexit>Dx̂(x, x̂)

<latexit sha1_base64="KTykv4y7G9hlgzCGnxDnzUCjz/o=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0WoIiURXwsXBTcuXFSwD2hCmEwn7dDJg5mJWEJ+xo2/4saFRQRX/oqTNKC2Hhg495x7mXuPGzEqpGF8aqWFxaXllfJqZW19Y3NL395pizDmmLRwyELedZEgjAakJalkpBtxgnyXkY47us78zgPhgobBvRxHxPbRIKAexUgqydGvLB/JIUYsuU2dxBoimeQK95PHNE1reeF6qjiGP24upIeOXjXqRg44T8yCVEGBpqNPrH6IY58EEjMkRM80ImkniEuKGUkrVixIhPAIDUhP0QD5RNhJfmUKD5TSh17I1QskzNXfEwnyhRj7rurMdhSzXib+5/Vi6V3aCQ2iWJIATz/yYgZlCLPIYJ9ygiUbK4Iwp2pXiIeIIyxVsBUVgjl78jxpn9TN8/rZ3Wm1cVTEUQZ7YB/UgAkuQAPcgCZoAQyewAt4AxPtWXvV3rWPaWtJK2Z2wR9oX98BvadW</latexit>Lx̂(x, x̂) <latexit sha1_base64="tCgBO1tF2pfsMT0JGAkxal6nroc=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0WoIiURXwsXBTcuXFSwD2hCmEwn7dDJg5mJUEN+xo2/4saFRQRX/oqTNKC2Hhg495x7mXuPGzEqpGF8aqWFxaXllfJqZW19Y3NL395pizDmmLRwyELedZEgjAakJalkpBtxgnyXkY47us78zgPhgobBvRxHxPbRIKAexUgqydGvLB/JIUYsuU2dxBoimeQK95PHNE1reeF6qjiGP24upIeOXjXqRg44T8yCVEGBpqNPrH6IY58EEjMkRM80ImkniEuKGUkrVixIhPAIDUhP0QD5RNhJfmUKD5TSh17I1QskzNXfEwnyhRj7rurMdhSzXib+5/Vi6V3aCQ2iWJIATz/yYgZlCLPIYJ9ygiUbK4Iwp2pXiIeIIyxVsBUVgjl78jxpn9TN8/rZ3Wm1cVTEUQZ7YB/UgAkuQAPcgCZoAQyewAt4AxPtWXvV3rWPaWtJK2Z2wR9oX98LRadc</latexit>Lẑ(z, ẑ)

<latexit sha1_base64="2hu+QXWv9KcC5MdXPlxXmncpYCg=">AAACJXicbVDLSsNAFJ3UV62vqEs3g0WoIiURXwsXBV24rGAf0IQwmU7aoZMHMxOhhvyMG3/FjQuLCK78FSdpQG09MHDuOfcy9x43YlRIw/jUSguLS8sr5dXK2vrG5pa+vdMWYcwxaeGQhbzrIkEYDUhLUslIN+IE+S4jHXd0nfmdB8IFDYN7OY6I7aNBQD2KkVSSo19ZPpJDjFhykzqJNUQyyRXuJ49pmtbywvVUcQx/3FxIDx29atSNHHCemAWpggJNR59Y/RDHPgkkZkiInmlE0k4QlxQzklasWJAI4REakJ6iAfKJsJP8yhQeKKUPvZCrF0iYq78nEuQLMfZd1ZntKGa9TPzP68XSu7QTGkSxJAGefuTFDMoQZpHBPuUESzZWBGFO1a4QDxFHWKpgKyoEc/bkedI+qZvn9bO702rjqIijDPbAPqgBE1yABrgFTdACGDyBF/AGJtqz9qq9ax/T1pJWzOyCP9C+vgH9hqdU</latexit>Dẑ(z, ẑ)

Fig. 3. Training of TURBO digital twin system: direct and reverse training path. The direct path is based on an AE that encodes the physical CDP x into
the latent representation z̃ end decodes back the physical CDP x̂. The reverse path is also based on an AE consisting of the same encoder and decoder but
working in the reverse order. The reverse path AE encodes the digital template z into the physical CDP x̃ and decodes back the digital template ẑ. The
encoder and decoder of direct and reverse paths are trained to maximize the mutual information between the encoded and reconstructed data with respect to
the corresponding references.

framework [25];
• the demonstration of the link of the TURBO framework

and Information Bottleneck and the state-of-the-art paired
and unpaired image-to-image translation methods;

• the extended study of bidirectional generation between
digital templates and CDP for images acquired by scan-
ner, and two types of mobile phones iPhone 12 Pro
(iOS) and Samsung Galaxy Note 20 Ultra (Android) with
different imaging characteristics;

• investigation of the performance and sensitivity of the
proposed Turbo framework to the data pre-processing
and architectural particularities of TURBO encoders, de-
coders and losses.

Notations. We use the following notations: z ∈ {0, 1}m×m de-
notes an original digital template of size m×m; x ∈ [0, 1]m×m

corresponds to an image of original CDP, while f ∈ [0, 1]m×m

is used to denote an image of fake CDP; y ∈ [0, 1]m×m

stands for a probe that might be either original or fake. We
use Ep(x)[.] to denote mathematical expectation with respect
to a distribution p(x), DKL(.||.) denotes Kullback-Leibler
(KL)-divergence and I(.; .) stands for mutual information.
We assume that a pair of digital template z and CDP x are
distributed as (x, z) ∼ px,z(x, z) or simply as p(x, z). We will
use z and x to denote the real digital template and CDP, z̃ and
x̃ their synthetic counterparts and ẑ and x̂ the reconstructed
data from the corresponding synthetic counterparts x̃ and
z̃. Accordingly, the marginal distributions of synthetic and
reconstructed data are denoted as p̃θ(x) and p̂θ(x) and q̃ϕ(z)
and p̂ϕ(z) for CDP and digital templates, respectively.

II. PRINTING-IMAGING CHANNEL IN CDP
AUTHENTICATION PIPELINE

The printing-imaging system under the study is shown in
Fig. 1. The digital template z represents a random binary
pattern with maximized entropy to complicate its prediction
from the printed counterpart. It is generated from some key
associated to a given physical object or can carry out some
secretly encoded message. An industrial printer reproduces

this digital template z on surface of an object that should
be protected thus creating a CDP of the protected object.
Alternatively, it can be reproduced on the object’s packaging.
An image of printed CDP can be acquired by some imaging
device such as a phone. This image x can be stored in the
database of the original CDP for further authentication.

It should be pointed out that printing and imaging represent
a very complex physical channel from z to x with an unknown
mathematical model and that it is also subject to various
deviations during different sessions of printing and imaging.
Thus, the development of an exact mathematical model of this
printing-imaging process for each model of printer, substrate,
phone, their settings and imaging conditions represents a
very costly and time consuming problem. Therefore, it is not
attractive for practical large scale applications. Instead, one
can target to create a stochastic model p(x|z) of this channel
or its parameterized version pθ(x|z) implemented in the form
of a deep neural network with parameters θ.

Once objects protected by CDP are produced, the verifier
can perform their authentication. A schematic diagram of the
authentication process is shown in Fig. 2. Given a physical
object protected by CDP, the counterfeiter will try to pro-
duce the closest replica of the original object using recent
advancements in reproduction technologies. It also concerns
reproduction or cloning of CDP using machine learning tools
as demonstrated in [10]. The goal of the end-user (verifier) is
to acquire a probe CDP y from the object under verification
and to run an authentication test producing a decision in favor
of the hypothesis H1 for the authentic object and H0 for the
fake one. The authentication procedure might be based on
various statistical tests that differentiate the features of original
and faked CDP [1], [2], [8], [12]. Recently it was shown
that the authentication can be performed on a generalized
approach based on the digital template z, physical template x
or synthetic physical template x̃ [9], [26] as shown in Fig. 2.

Authentication based on synthetic template has many ad-
vantages in large scale practical applications since it does not
require the acquisition of CDP images from each physical
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object while producing an authentication accuracy close to
the one based on the physical templates [9]. At the same
time, the synthetic physical template x̃ should be generated
from the digital template z that in turns requires an accurate
simulator capable to simulate the printing-imaging channel.
Additionally, the training of an accurate authentication system
based on two-class or one-class classifiers might require a lot
of training data acquired from both original and faked objects.
This might be very costly or sometimes impossible in practice.
That is why the development of digital twin system of printing-
imaging channel looks very attractive.

III. DIGITAL TWIN BASED ON TURBO SYSTEM

Since the exact mathematical model of the considered
printing-imaging channel is unknown, we will instead proceed
with its digital twin system. This digital twin system is shown
in Fig. 1. It can be considered as two channels: (a) a direct
printing-imaging channel pθ(x|z) producing synthetic CDP
samples x̃ from the digital template z and (b) an inverse
printing-imaging channel qϕ(z|x) producing synthetic digital
template estimates z̃ from physical CDP x. These channels
can be stochastic or deterministic pθ(x|z) = δ(x − gθ(z))
and qϕ(z|x) = δ(z− fϕ(x)), where δ(.) stands for the delta-
function and gθ(.) and fϕ(.) denote deterministic parameter-
ized neural networks with the corresponding parameters θ and
ϕ. The presence of direct and inverse digital twin channels can
be very useful for both defender and attacker. The defender
can use the direct channel for the production of synthetic
physical templates for the authentication as considered in
Fig. 2. Additionally, the synthetic templates can be considered
as augmentation for the training of classifiers. The attacker can
use the inverse channel for the estimation of digital templates
from the scanned CDP of original objects with their following
integration into the faked objects. Furthermore, the fact that
the digital twin is fully differentiable opens for the attacker
a possibility to design adversarial attacks for the physical
world applications. The adversarial attacks against CDP in the
physical world remain an open and little studied problem for
now.

In this paper, we will consider a generalized approach
named TURBO to the training of pθ(x|z) and qϕ(z|x). This
includes the training of both pθ(x|z) and qϕ(z|x) simultane-
ously. Then a particular use of each digital twin depends on
the targeted application.

A. The intuition behind TURBO system

The proposed digital twin system is based on an AE
architecture and consists of stochastic encoder qϕ(z|x) and
decoder pθ(x|z) that are deep networks parametrized by the
parameters ϕ and θ, respectively. The block diagram of the
TURBO system is shown in Fig. 3.

Since it is assumed that the CDP image x and template z
follow the joint distribution (x, z) ∼ px,z(x, z), it is natural to
consider a generative process in two ways, i.e., the encoding
and decoding of x and the encoding and decoding of z. Such a
consideration is justified by two ways of decomposition of the
joint distribution based on the chain rule: (a) the direct way

px,z(x, z) = px(x)p(z|x) and (b) the reverse way px,z(x, z) =
pz(z)p(x|z).

In contrast to this interpretation, classical AEs such as
variational AE (VAE) [27], [28] or adversarial AE (AAE) [29]
consider only the direct path, i.e., the encoding and decoding
with respect to x only. Additionally, in contrast to these
classical AEs, where the latent space of the encoder qϕ(z|x)
represented by z is considered to be a non-physical data
governed by some easy to analyze and easy to sample from
distribution p(z) typically selected to be Gaussian probability
density function (pdf), the TURBO framework considers the
representation z to be statistically related to x according to
px,z(x, z). That is why the encoder qϕ(z|x) and decoder
pθ(x|z) that form the TURBO architecture are trained in two
ways referred to as direct path and reverse path1. At the direct
path, the encoder qϕ(z|x) receives x as an input and produces
an estimation of z̃ as close as possible to the corresponding z.
The decoder receives z̃ as input and produces a reconstructed
version x̂ as close as possible to x. Mutual information is used
to measure the correspondence between the pair of z̃ and z
and the pair of x̂ and x as shown in Fig. 3. At the reverse
path, the decoder pθ(x|z) receives z as an input and generates
x̃ as a new latent representation to be as close as possible to x
and the encoder qϕ(z|x) produces a reconstructed version of
ẑ as close as possible to z. Mutual information should ensure
the correspondence between the pair of x̃ and x and the pair
of ẑ and z.

B. Definition of TURBO loss

To train the encoder’s qϕ(z|x) and decoder’s pθ(x|z) pa-
rameters ϕ, θ, the TURBO loss is defined as:

LTURBO (ϕ, θ) = LDirect (ϕ, θ) + λTLReverse (ϕ, θ), (1)

where λT is a trade-off parameter between the two terms and
the direct path loss LDirect (ϕ, θ) and the reverse path loss
LReverse (ϕ, θ) are:

LDirect (ϕ, θ) = −Iz
ϕ(X;Z)− λDIx

ϕ,θ(X; Z̃), (2)

LReverse (ϕ, θ) = −Ix
θ (X;Z)− λRIz

ϕ,θ(X̃;Z). (3)

The terms Iz
ϕ(X;Z) and Ix

ϕ,θ(X; Z̃) impose the constraints on
the latent and reconstruction spaces of the direct path, respec-
tively, and symmetrically the terms Ix

θ (X;Z) and Iz
ϕ,θ(X̃;Z)

impose the constraints on the latent and reconstruction spaces
of the reverse path. These terms will be introduced below. The
parameters λD and λR trade-off the latent and reconstruction
spaces’ constraints in the direct and reverse paths.

The training of the TURBO system is considered as a
maximization of mutual information problem, which translates
into the minimization of loss problem:

(ϕ̂, θ̂) = argmin
ϕ,θ

LTURBO (ϕ, θ). (4)

The TURBO framework assumes the training of the en-
coder qϕ(z|x) and decoder pθ(x|z) to maximize the mutual

1One should distinguish the direct and inverse digital twin printing-imaging
channels shown in Fig. 1 from the direct and reverse paths of TURBO training
as shown in Fig. 3.
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information between the predicted and physically observable
components. Since the practical computation of mutual infor-
mation is challenging, we provide variational approximations
to the mutual information terms as described in Appendices
A and B. The TURBO loss contains four variational terms as
defined in (2) and (3).

1) The loss of the direct path: The first term Iz
ϕ(X;Z)

of the direct path (2) represents a variational approximation
to the mutual information between the estimated z̃ obtained
from x ∼ px(x) via the encoder qϕ(z|x) and true template
z corresponding to the pair {x, z} ∼ px,z(x, z) as shown in
Fig. 3. The variational approximation to this mutual informa-
tion introduced in Appendix A is defined as:

Iz
ϕ(X;Z) := Ep(x,z) [log qϕ(z|x)]︸ ︷︷ ︸

−Lz̃(z,z̃)

−DKL (pz(z)∥q̃ϕ(z))︸ ︷︷ ︸
Dz̃(z,z̃)

.

(5)
The first term represents the conditional cross-entropy for
the distribution qϕ(z|x) and the second term stands for the
KL-divergence denoted as Dz̃(z, z̃) between the marginal
distribution of true data pz(z) and marginal distribution
q̃ϕ(z) of the output of the encoder. One can assume that
qϕ(z|x) ∝ exp

(
−α ∥z− fϕ(x)∥1

)
follows a Laplacian dis-

tribution with a scale parameter α, ∥.∥1 denoting the ℓ1-
norm and fϕ(.) representing a parametrized encoder network.
Thus, one can define a pair-wise estimation loss Lz̃(z, z̃) :=
αEpx,z(x,z)

[
∥z− fϕ(x)∥1

]
2. Therefore, by maximizing the

variational approximation term Iz
ϕ(X;Z) at the direct path,

one minimizes the pair-wise estimation loss Lz̃(z, z̃) and KL-
divergence Dz̃(z, z̃) in (5).

The second term Ix
ϕ,θ(X; Z̃) of the direct path ensures the

reconstruction of data x̂ from the latent representation z̃, i.e.,
we consider a chain x → z̃ → x̂ that corresponds to Fig. 3.
This term corresponds to a variation approximation of mutual
information between the true x and its reconstructed version
x̂ as developed in Appendix A:

Ix
ϕ,θ(X; Z̃) := Epx(x)

[
Eqϕ(z|x) [log pθ(x|z)]

]︸ ︷︷ ︸
−Lx̂(x,x̂)

−DKL (px(x)∥p̂θ(x))︸ ︷︷ ︸
Dx̂(x,x̂)

.
(6)

The first term of (6) represents the conditional cross-entropy
and can be practically computed similarly to the reconstruction
loss considered above. One can assume that pθ(x|z) ∝
exp (−β ∥x− gθ(z)∥1) with a scale parameter β and gθ(.)
representing a parametrized decoder network. In this case,
one can define a pair-wise reconstruction loss Lx̂(x, x̂) :=
βEpx(x)

[
Eqϕ(z|x) [∥x− gθ(z)∥1]

]
. The KL-divergence term

denoted as Dx̂(x, x̂) ensures the proximity between the dis-
tributions of true data px(x) and reconstructed data p̂θ(x).
Thus, the maximization of Ix

ϕ,θ(X; Z̃) in the direct loss (2)
corresponds to the minimization of the reconstruction loss
Lx̂(x, x̂) and the KL-divergence Dx̂(x, x̂).

2In case of Gaussian assumption on the estimation error between z and
z̃ = fϕ(x), the ℓ2-norm will be used instead of ℓ1-norm.

2) The loss of the reverse path: The reverse path of TURBO
uses the same encoder and decoder as at the direct path but
operates in the reverse order, i.e., the AEs’ input is z instead
of x as for the direct path. Therefore, the first term Ix

θ (X;Z)
of the reverse path in (3) is defined in Appendix B as:

Ix
θ (X;Z) := Ep(x,z) [log pθ(x|z)]︸ ︷︷ ︸

−Lx̃(x,x̃)

−DKL (px(x)∥p̃θ(x))︸ ︷︷ ︸
Dx̃(x,x̃)

.

(7)
Similarly to the direct path considered above, the first
term of (7) represents the conditional entropy and can
be practically considered as a pair-wise loss Lx̃(x, x̃) :=
γEpx,z(x,z) [∥x− gθ(z)∥1] under the Laplacian assumption
pθ(x|z) ∝ exp (−γ ∥x− gθ(z)∥1) with a scale parameter
γ. The second term denoted as Dx̃(x, x̃) represents the
KL-divergence between the marginal distribution px(x) and
marginal distribution of estimated data p̃θ(x).

Finally, the second term Iz
ϕ,θ(X̃;Z) of the reverse path in

the loss (3) ensures the reconstruction of ẑ from the latent rep-
resentation x̃ according to a considered chain z → x̃ → ẑ that
corresponds to Fig. 3. This term corresponds to a variational
approximation of mutual information between the true z and
its reconstructed version ẑ as developed in Appendix B:

Iz
ϕ,θ(X̃;Z) :=Epz(z)

[
Epθ(x|z) [log qϕ(z|x)]

]︸ ︷︷ ︸
−Lẑ(z,ẑ)

−DKL (pz(z)∥q̂ϕ(z))︸ ︷︷ ︸
Dẑ(z,ẑ)

.
(8)

The first term of (8) represents the conditional cross-
entropy that can be practically computed as Lẑ(z, ẑ) :=
νEpz(z)

[
Epθ(x|z)

[
∥z− fϕ(x)∥1

]]
under the assumption of

Laplacian distribution of reconstruction error qϕ(z|x) ∝
exp

(
−ν ∥z− fϕ(x)∥1

)
with a scale parameter ν. The KL-

divergence term denoted as Dẑ(z, ẑ) ensures the proximity
between the distributions of true data pz(z) and reconstructed
data q̂ϕ(z). Accordingly, the maximization of Iz

ϕ,θ(X̃;Z) in
the reverse loss (3) corresponds to the minimization of the
reconstruction loss Lẑ(z, ẑ) and the KL-divergence Dẑ(z, ẑ).

Therefore, the complete direct and reverse losses of the
TURBO framework are:

LDirect(ϕ, θ) = Lz̃(z, z̃) +Dz̃(z, z̃)

+ λDLx̂(x, x̂) + λDDx̂(x, x̂),
(9)

LReverse(ϕ, θ) = Lx̃(x, x̃) +Dx̃(x, x̃)

+ λRLẑ(z, ẑ) + λRDẑ(z, ẑ).
(10)

C. Link to Information Bottleneck

The TURBO framework can be viewed from an information
bottleneck (IBN) perspective, considering either the direct path
or the reverse path. The IBN originally suggested by Tishby
et. al. [30] assumes the minimization of mutual information
between the input of system x and some latent representation
z while preserving mutual information between z and some
utility attribute c that can represent class labels, segmentation
maps, etc. The IBN was extended to a variational formulation
in [31] allowing to practically compute mutual information.
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Finally, the IBN was generalized to AE formulation [32] to
address the self-encoding and reconstruction. This allowed to
generalize a family of AE models such as VAE [27], [28],
β-VAE [33], InfoVAE [34] and others based on a concept
of bounded information bottleneck AE (BIB-AE) [32]. Along
the same way, the AE formulation was also extended to
semi-supervised learning [35] that allowed to generalize self-
encoding and classification systems such as CatGAN [36],
VAE (M1 + M2) [37] and SeGMA [38].

Besides some remarkable similarities between the TURBO
and the IBN frameworks, there are a number of fundamental
differences that can be summarized as follows:

• optimization objectives: IBN targets to compress the
latent representation using minimization of mutual infor-
mation between the system input and latent representation
which follows a chosen distribution pz(z) while TURBO
targets maximization of the above mutual information
with the distribution that follows from the joint pdf
px,z(x, z), i.e., from the physical observation model;

• physically meaningful latent space: the latent space
distribution of IBN is chosen to be easy to sample from
and to analyse in terms of calculation of KL-divergence
as for example in VAE, i.e., it does not bring any
physical interpretation, while the latent space of TURBO
is considered as a physically observable representation
matched in dimensions and statistical behavior with the
corresponding variables;

• two-way consideration: IBN typically considers only
one directional path to train a model consisting of the
encoder and decoder while TURBO has two paths each
for its own observable data but with a common model.

D. Link to the state-of-the-art translation methods

The proposed TURBO model can also be considered in the
scope of the image-to-image translation problem for two paths.
Along this consideration, TURBO generalizes models such as
pix2pix [39] and CycleGAN [40] and is conceptually linked
to Contrastive Unpaired Translation (CUT) model [41].

1) Paired setup: pix2pix [39] is a representative of paired
setup, i.e., when training data is represented by N paired
samples {xi, zi}Ni=1. The goal of pix2pix image-to-image
translation is to train a model qϕ(z|x) = δ(z − fϕ(x)) that
would produce an estimate z̃ = fϕ(x). Since the considered
setup is paired, the reconstruction loss Lz̃(z, z̃) is imposed
along the distribution matching loss Dz̃(z, z̃) a.k.a. adversarial
loss requiring correspondence between the distributions q̃ϕ(z)
and pz(z). Symmetrically, one can consider the translation
problem from z to x.

The pix2pix [39] image-to-image translation model can be
viewed as a particular case of the TURBO approach where
only the encoder qϕ(z|x) is used for the direct path (2) and
λD = 0 or where only the decoder pθ(x|z) is used for the
reverse path (3) and λR = 0. Accordingly, the direct and
reverse formulations of pix2pix [39] can be written as:

LDirect
pix2pix(ϕ) = Lz̃(z, z̃) +Dz̃(z, z̃), (11)

LReverse
pix2pix (θ) = Lx̃(x, x̃) +Dx̃(x, x̃). (12)

One advantage of the TURBO model compared to the
pix2pix is simultaneous training in both directions at once,
making the encoder and decoder consistent with each other.
Also, we link networks to the information-theoretic framework
and add cycle-consistency losses.

A popular super-resolution framework SRGAN [42] can be
considered as a particular case of one-way TURBO frame-
work (11). Finally, one can also consider only the paired
loss Lx̃(x, x̃) while skipping the distribution matching part
Dx̃(x, x̃) for simplicity of training.

2) Unpaired setup: CycleGAN [40] image-to-image trans-
lation is developed for those cases when only two sets of
unpaired data {xi}Ni=1 and {zj}Mj=1 are available for training.
In this situation, a cycle consistency is needed to ensure the
encoding of x into z̃ and back decoding to x̂ for the direct
path and the encoding of z into x̃ and back decoding to ẑ
for the reverse one. The accuracy of encoding and decoding is
ensured by two cycle reconstruction losses corresponding to
Lx̂(x, x̂) and Lẑ(z, ẑ) in (9) and (10). This reflects the part
of the “cycle” in CycleGAN.

Since the considered setup is unpaired, the distributions
of latent representations are controlled by the KL-divergence
terms Dz̃(z, z̃) and Dx̃(x, x̃) in (9) and (10) that corresponds
to “GAN” type of constraints.

Therefore, the total loss of CycleGAN corresponds to a
particular case of the TURBO framework:

LCycleGAN(ϕ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂)

+ λTDx̃(x, x̃) + λTλRLẑ(z, ẑ).
(13)

While CycleGAN was created only for unpaired data,
the TURBO model can be applied to the paired or even
mixed setup as well. By including a discriminator’s loss
for reconstruction and pairwise estimation loss in the latent
space it is possible to achieve more stable training and better
performance.

Therefore, TURBO generalizes both paired and unpaired
systems in both families of translation models.

Additionally, considering individually each path, one can
notice that the TURBO setup also generalizes AAE [29],
which imposes KL-divergence constraint on the distribution
of the latent space and ensures the reconstruction constraint
after the decoder.

Finally, one can also consider a link to contrastive unpaired
translation (CUT) system [43], where the mutual information
between the positive pairs is maximized. Conceptually, it
corresponds to the direct path of Turbo where x is considered
as the reference and z as its positive pair. At the same time,
the mutual information decomposition of TURBO differs from
those used in CUT, which is based on the InfoNCE framework
[44]. Thus, these systems cannot be compared directly.

IV. ARCHITECTURAL AND TRAINING DETAILS

The TURBO system offers a high level of flexibility,
providing many degrees of freedom. In the current section,
we describe different architectural solutions for encoder and
decoder, adversarial losses and techniques for improving the
stability of training. A full list of used hyperparameters is
presented in Appendix D.
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TABLE I
MODELS PERFORMANCE ON THE SCANNER DATA

Model FID x → z̃ ↓ Hamming distance ↓ FID z → x̃ ↓ MSE ↓ SSIM↑

W/O processing 304.13 0.24 304.01 0.181 0.48

CUT 3.86 0.20 5.29 0.061 0.70

pix2pix 3.37 0.11 8.57 0.045 0.76

CycleGAN 3.87 0.15 4.45 0.049 0.73

TURBOunpaired
CNN-RESNET-CNN 3.57 0.16 5.91 0.059 0.68

TURBOpaired (w D)
UNET 4.27 0.11 8.94 0.043 0.77

TURBOpaired (w D)
CNN-RESNET-CNN 3.16 0.09 6.60 0.040 0.78

Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN 53.31 0.15 37.82 0.037 0.77

Deep TURBOpaired (w/o D)
CNN-RESNET-CNN 7.77 0.12 24.09 0.036 0.78

TURBOpaired
UNET 6.21 0.10 28.11 0.036 0.78

TURBOpaired
Eff-UNET-2 11.33 0.09 28.48 0.037 0.77

TURBOpaired
Eff-UNET-7 11.83 0.09 28.95 0.037 0.77

A. Structure of encoder and decoder

Our proposed approach does not enforce any specific con-
straints on the architecture of the encoder qϕ(z|x) and decoder
pθ(x|z), allowing for a wide range of technical choices.
In our work, we have considered several most widely used
architectures for encoders and decoders, namely:

• CNN-RESNET-CNN adapted from CycleGAN and Star-
GAN [45] models, consisting of two convolutional layers
for downsampling, nine residual blocks [46], and two
transposed convolutional layers for upsampling;

• UNET [47] with skip-connections layers;
• Eff-UNET [48] that uses the EfficientNet backbone [49]

to extract high-level features from the input image and
then using the UNET decoder for the reconstruction.

The instance normalization [50] was used to stabilize train-
ing together with Adam optimizer [51].

B. Adversarial loss and structure of discriminators

The choice of the adversarial loss function, which imple-
ments DKL(.||.) terms in (5)-(8), could be crucial for the
success of the training for the considered models [52]. In
our previous work [24], we examined three commonly used
adversarial losses: LSGAN [53], HINGE [54] and WGAN [55]
with gradient penalty [56]. Our experiments demonstrated that
WGAN is the most efficient in achieving desirable outcomes.
Consequently, in our current work, we exclusively use the
WGAN adversarial loss.

Based on the investigation performed in [24], we use the
ImageGAN discriminator based on residual networks [46].

C. Stability of training

Adversarial training with discriminators is known to be quite
unstable due to the mode collapse and vanishing of gradients.
To address these challenges, we employ several techniques to
enhance training stability:

• First, we balance the iterations between the discriminator
and the generator by controlling the number of discrimi-
nator iterations per generator iteration, denoted as nD.

• Additionally, we update the discriminators using a history
of generated images rather than solely relying on images
generated at the last iteration [57]. This approach helps
provide more diverse and informative training examples
for the discriminators.

• To further enhance stability, we introduce occasional label
flipping during discriminator training with a probability
of pflip [58]. This technique involves randomly changing
the labels to create a more robust discriminator.

• Moreover, we incorporate artificial noise into the dis-
criminator’s inputs with a probability of pnoise and a
weight wnoise [59]. This noise injection helps prevent the
discriminator from overfitting and encourages it to learn
more generalized representations.

By integrating these strategies, we have observed improved
stability and performance in our training process.

V. EXPERIMENTAL RESULTS

A. Dataset

The experimental results are divided into two parts: (i)
experiments conducted on data acquired by a high-resolution
scanner and (ii) experiments conducted on data acquired by
modern mobile phones.

The experiments on the scanner data are an extension of
our previous work [24]. In this respect, the same Indigo 1 ×
1 base dataset [10]3 was used. This dataset consists of 720
digital CDP of size 228 × 228 with 1 × 1 pixel symbol size.
One pixel with the value 1 in the digital template represents
a symbol of size 1 × 1 that corresponds to a printed black
spot on the substrate of size approximately 30 µm in diameter
when printed at the resolution of 812.8 dpi. No halftoning
is applied during the printing. The digital CDP were printed
at HP Indigo 7600 industrial printer at a resolution of 812.8
dpi and enrolled by Epson Perfection V850 Pro scanner at a
resolution of 2400 ppi. Taking into account the printing and
acquisition resolutions, the obtained CDP are of size 684×684
meaning that 1× 1 pixel in a digital template corresponds to

3http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-base
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3 × 3 block in a printed CDP and the final codes are 16-bit
gray-scaled images.

The experiments on the mobile phone data were performed
on the recently created Indigo 1x1 variability dataset [11]4

that consists of 1440 digital CDP of size 228×228 with 1×1
pixel symbol size. The CDP were printed at HP Indigo 5500
industrial printer at a resolution of 812.8 dpi and enrolled by
iPhone 12 Pro and Samsung Galaxy Note 20 Ultra cell phones.
The obtained CDP are of size 228×228 and encoded as 8-bit
RGB-images.

Both mentioned datasets contain the original and fake
CDP. For our experiments, we used only the original codes.
However, it should be noted that in both cases the fakes were
produced on the same printing and acquisition equipment as
the original codes. In this respect, the model trained on the
original codes can be efficiently applied to generate fake codes.

B. Metrics

The following metrics were used to evaluate the quality of
the synthesised twins:

• Hamming distance between the original digital template
z and the binarized estimation z̃.

• Mean square error (MSE) between the original printed
code x and the synthesized twin x̃.

• To address an issue that the MSE is not highly indicative
of the perceived similarity of images, we calculate the
Structural Similarity Index (SSIM) [60] between the
original printed code x and the synthesized twin x̃.

• Fréchet Inception Distance (FID): FID z → x̃ and
FID x → z̃ proposed in [61]. Instead of a simple pixel-
by-pixel comparison of images, FID estimates the mean
and standard deviation of one of the deep layers in
the pretrained convolutional neural network. It became
one of the most widely used metric for image-to-image
translation task. We suppose that the usage of deep
network statistics can be helpful not only as a measure
of human perception of image similarity but also to
assess the difficulty of distinguishing the generated
images from the real ones since the network activations
are similar at a metric close to zero.

C. Setups under investigation

To demonstrate the flexibility of the proposed TURBO
framework, we will consider both paired and unpaired se-
tups. It might be trained in both direct and reverse paths
simultaneously or only in one path, for example, from the
template z to the printed code x (reverse path) or vice versa. At
the same time, different encoder-decoder architectures might
be used. In our experiments, we compared the performance
of the paired and unpaired setups under the same encoder-
decoder architecture and investigated the performance of the
paired setup under different encoder-decoder architectures.
More particularly, we study the following setups:

4http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-variability

• TURBOunpaired
CNN-RESNET-CNN with the CNN-RESNET-CNN

based encoder-decoder and the total loss:

Lunpaired
CNN-RESNET-CNN(ϕ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂)

+ λDDx̂(x, x̂) + λTDx̃(x, x̃)

+ λTλRLẑ(z, ẑ) + λTλRDẑ(z, ẑ).

• TURBOpaired (w D)
CNN-RESNET-CNN with the CNN-RESNET-CNN

based encoder-decoder and the total loss:

Lpaired (w D)
CNN-RESNET-CNN(ϕ, θ) = Lz̃(z, z̃) +Dz̃(z, z̃)

+ λDLx̂(x, x̂) + λDDx̂(x, x̂)

+ λTLx̃(x, x̃) + λTDx̃(x, x̃)

+ λTλRLẑ(z, ẑ) + λTλRDẑ(z, ẑ).

• TURBOpaired (w/o D)
CNN-RESNET-CNN shallow and deep (14’936 and

8’402’304 models’ parameters) with the CNN-RESNET-
CNN based encoder-decoder and the total loss:

Lpaired (w/o D)
CNN-RESNET-CNN(ϕ, θ) = Lz̃(z, z̃) + λDLx̂(x, x̂)

+ λTLx̃(x, x̃) + λTλRLẑ(z, ẑ).

• TURBOpaired
UNET with the UNET based encoder-decoder and

the same loss as TURBOpaired (w/o D)
CNN-RESNET-CNN.

• TURBOpaired
Eff-UNET-2 with the Eff-UNET-2 based encoder-

decoder and the same loss as TURBOpaired (w/o D)
CNN-RESNET-CNN.

• TURBOpaired
Eff-UNET-7 with the Eff-UNET-7 based encoder-

decoder and the same loss as TURBOpaired (w/o D)
CNN-RESNET-CNN.

• W/O processing setup is used to estimate the baseline
performance where we assume z̃ = x in the direct path
and, in the reverse path, an ideal printing-imaging without
any distortions, i.e., x̃ = z.

D. Analysis of obtained results

We perform the investigation of the proposed TURBO
framework in different configurations on CDP enrolled by
the scanner and mobile phones. From the point of view of
synthetic code generation the scanner data are more chal-
lenging since they contain more fine details, compared to the
mobile data. From the point of view of verification by the end
customers, the mobile data present a bigger value as a more
practical scenario. From the point of view of the attacker, the
scanner data is a more practical scenario since it allows them
to perform a more accurate estimation of the original digital
templates. Thus, both scanner and mobile data have important
practical significance.

It should also be noted that these results were obtained
without any post-processing and are the direct output of deep
networks. Additional post-processing might increase the accu-
racy of digital template estimation and generation. However,
to preserve the scalability to any artwork and fair comparison,
we report all results without any refinements.

1) Scanner data: The results obtained on the scanner data
are given in Table I. Comparing the unpaired and paired
setups it should be noted that the paired setup is better for
the estimation of the digital template z for both considered
metrics, i.e., FID x → z̃ and Hamming distance. For the printed
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TABLE II
MODELS PERFORMANCE ON THE IPHONE DATA

Model FID x → z̃ ↓ Hamming distance ↓ FID z → x̃ ↓ MSE ↓ SSIM↑

N
on

-n
or

m
al

iz
ed

W/O processing 288.09 0.30 288.08 0.257 0.23

pix2pix 13.61 0.23 12.76 0.006 0.90

CycleGAN 24.78 0.27 14.17 0.015 0.72

TURBOunpaired
CNN-RESNET-CNN 10.30 0.27 17.13 0.017 0.69

TURBOpaired (w D)
UNET 7.36 0.23 11.72 0.005 0.91

TURBOpaired (w D)
CNN-RESNET-CNN 6.83 0.24 10.78 0.005 0.91

Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN 113.62 0.23 50.82 0.005 0.90

Deep TURBOpaired (w/o D)
CNN-RESNET-CNN 11.88 0.22 17.32 0.005 0.92

TURBOpaired
UNET 36.90 0.21 16.93 0.005 0.92

TURBOpaired
Eff-UNET-2 62.76 0.21 18.95 0.005 0.92

TURBOpaired
Eff-UNET-7 60.66 0.21 18.30 0.005 0.92

N
or

m
al

iz
ed

W/O processing 289.68 0.30 289.68 0.254 0.25

pix2pix 11.82 0.23 11.64 0.005 0.91

CycleGAN 20.69 0.27 12.59 0.014 0.78

TURBOunpaired
CNN-RESNET-CNN 11.73 0.28 14.71 0.020 0.70

TURBOpaired (w D)
UNET 6.81 0.23 12.45 0.005 0.92

TURBOpaired (w D)
CNN-RESNET-CNN 6.56 0.24 10.20 0.005 0.91

Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN 113.62 0.23 48.75 0.005 0.91

Deep TURBOpaired (w/o D)
CNN-RESNET-CNN 11.85 0.22 13.76 0.005 0.92

TURBOpaired
UNET 35.35 0.21 12.22 0.004 0.92

TURBOpaired
Eff-UNET-2 61.27 0.21 17.02 0.004 0.92

TURBOpaired
Eff-UNET-7 64.58 0.21 16.64 0.005 0.92

twins generation, the paired setup shows better results in
terms of the pixel metrics, i.e., MSE and SSIM, while the
unpaired setup achieves better generalization in terms of non-
pixel FID metric. Comparing the TURBOpaired (w D)

CNN-RESNET-CNN and
TURBOpaired (w/o D)

CNN-RESNET-CNN setups, one can see that the use of
discriminators is beneficial. As for TURBOpaired (w D)

CNN-RESNET-CNN and
UNET based setups, the CNN-RESNET-CNN based encoder-
decoder architecture is better on average. Regarding the perfor-
mance of the related state-of-the-art approaches, it should be
pointed out that the unpaired CycleGAN demonstrates the best
generalization in terms of FID z → x̃. The paired pix2pix is in-
ferior in effectiveness to the proposed TURBOpaired (w D)

CNN-RESNET-CNN
that demonstrates the best performance.

2) Mobile phones: In contrast to the scanner data, for
the mobile data, the enrolled image normalization might
play an important role allowing to compensate for lighting
irregularities and other important factors such as handshak-
ing. To investigate the sensitivity of the proposed TURBO
framework in different configurations to the input data ir-
regularities we evaluate the performance of the setup under
investigation on the non-normalized and normalized data5.
From the obtained results given in Tables Table II and Ta-
ble III one can see that, on average, the proposed TURBO
framework, as well as the considered state-of-the-art pix2pix
and CycleGAN methods, are quite robust to the enrollment

5As a normalization technique we used histogram matching to the selected
reference CDP with the most uniform histogram.

imperfections. We can observe small improvements on the
normalized data but, generally speaking, the results on nor-
malized and non-normalized data are very close. Moreover,
similarly to the scanner data, for both mobile phones the
TURBOpaired (w D)

CNN-RESNET-CNN outperforms TURBOunpaired
CNN-RESNET-CNN

setup. The Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN shows the worst

FID x → z̃ among all tested setups. The CNN-RESNET-CNN
based encoder-decoder architecture shows better generaliza-
tion in terms of FID metrics. While the UNEN-based TURBO
is better in terms of Hamming distance, MSE and SSIM.
The classical UNET is better than Eff-UNET. Similarly to the
scanner data, the proposed TURBO outperforms the state-of-
the-art pix2pix and CycleGAN.

It should be noted that on Samsung data all the methods
show several times worse FID z → x̃ generalization than on the
iPhone data. At the same time, MSE between the true printed
and synthesized codes are an order of magnitude less than on
scanner data. SSIM index is also higher for the mobile data
which is related to the less detailed enrolled data.

E. Visualization of synthetic samples
Examples of the synthetic twins generated by the

TURBOpaired (w D)
CNN-RESNET-CNN model in the direct and reverse paths

are shown in Table IV and Table V, respectively. It should
be noted that the synthetic digital templates z̃ generated in the
direct path are not fully binary and contain a certain amount of
grey pixels. That is expectable since the deep networks are not
capable to produce pure binary output. Thus, post-binarization,
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TABLE III
MODELS PERFORMANCE ON THE SAMSUNG DATA

Model FID x → z̃ ↓ Hamming distance ↓ FID z → x̃ ↓ MSE ↓ SSIM↑

N
on

-n
or

m
al

iz
ed

W/O processing 376.58 0.32 376.58 0.295 0.17

pix2pix 9.53 0.24 21.53 0.004 0.90

CycleGAN 13.68 0.28 22.00 0.010 0.77

TURBOunpaired
CNN-RESNET-CNN 16.10 0.28 26.04 0.015 0.66

TURBOpaired (w D)
UNET 9.65 0.24 18.49 0.004 0.90

TURBOpaired (w D)
CNN-RESNET-CNN 8.97 0.25 17.43 0.004 0.90

Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN 117.98 0.25 135.52 0.004 0.89

Deep TURBOpaired (w/o D)
CNN-RESNET-CNN 14.69 0.23 41.39 0.004 0.91

TURBOpaired
UNET 54.12 0.21 32.74 0.004 0.91

TURBOpaired
Eff-UNET-2 67.21 0.22 32.80 0.004 0.91

TURBOpaired
Eff-UNET-7 61.12 0.21 33.59 0.004 0.91

N
or

m
al

iz
ed

W/O processing 381.44 0.31 381.44 0.278 0.19

pix2pix 8.53 0.24 20.18 0.004 0.91

CycleGAN 8.85 0.28 22.85 0.015 0.69

TURBOunpaired
CNN-RESNET-CNN 11.71 0.29 22.89 0.015 0.70

TURBOpaired
UNET 8.56 0.24 19.51 0.004 0.91

TURBOpaired (w D)
CNN-RESNET-CNN 7.01 0.25 17.35 0.004 0.91

Shallow TURBOpaired (w/o D)
CNN-RESNET-CNN 127.02 0.25 135.95 0.004 0.90

Deep TURBOpaired (w/o D)
CNN-RESNET-CNN 14.27 0.23 37.37 0.003 0.92

TURBOpaired
UNET 54.80 0.21 28.88 0.003 0.92

TURBOpaired
Eff-UNET-2 63.25 0.21 42.70 0.003 0.92

TURBOpaired
Eff-UNET-7 70.08 0.21 42.33 0.003 0.92

TABLE IV
EXAMPLES OF SYNTHETIC SAMPLES GENERATED BY TURBOPAIRED (W D)

CNN-RESNET-CNN IN THE DIRECT PATH

Device Hist. matching Original CDP x Original digital z Synthetic digital z̃ Reconstructed CDP x̂

iPhone
✗

✓

Samsung
✗

✓
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TABLE V
EXAMPLES OF SYNTHETIC SAMPLES GENERATED BY TURBOPAIRED (W D)

CNN-RESNET-CNN IN THE REVERSE PATH

Device Hist. matching Original digital z Original CDP x Synthetic CDP x̃ Reconstructed digital ẑ

iPhone
✗

✓

Samsung
✗

✓

such as Otsu thresholding, could be applied if necessary.
The synthetic printed CDP x̃ generated in the reverse path
visually is almost identical to the original printed CDP x for
both phones. At the same time, the reconstructed digital ẑ
contains more artefacts than the original digital z. However,
in the reverse path, it is not critical, since the reconstruction
plays a role of an additional regularization on the whole
process similar to the reconstruction of x̂ in the direct path.
To conclude, the synthesised twins are of high quality for both
used mobile phones and there is no big model’s sensitivity to
the data normalization, i.e., histogram matching.

VI. CONCLUSIONS

The current work is dedicated to modelling the complex
physical printing-imaging process using a machine learning
based model known as a “digital twin” for anti-counterfeiting
applications based on CDP. The proposed model opens new
possibilities for the investigation of unexplored adversarial
attacks in the physical world, facilitates the data augmentation
for the supervised, self-supervised and even unsupervised, i.e.,
one class classification, learning methods.

Along with the detailed empirical investigation of the pro-
posed TURBO framework on the data enrolled by the high
quality scanner and two modern mobile phones, we provide
the complete proofs of information-theoretic formulations of
loss functions used in TURBO framework. In addition, we

also show a link to Information Bottleneck and to the state-
of-the-art translation methods like pix2pix and CycleGAN.

The obtained results show the high robustness of the pro-
posed TURBO framework to the input data imperfections
caused by the mobile phones acquisition and the synthesized
codes are of high quality and visually indistinguishable from
the corresponding real printed codes.

For future work, we will consider the usage of the generated
examples to build a classifier based on the augmented synthetic
samples of both original CDP and fakes. Additionally, issues
of stochasticity and usage in hybrid settings, where only part
of the data is paired, remain open for future research.
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APPENDIX A
INFORMATION THEORETIC FORMULATION OF THE DIRECT

PATH LOSS FUNCTION

The encoder loss of the direct path is defined as:

I(X;Z) = Ep(x,z)

[
log

p(x, z)

px(x)pz(z)

]
= Ep(x,z)

[
log

p(z|x)
pz(z)

qϕ(z|x)
qϕ(z|x)

]
= Ep(x,z)

[
log

qϕ(z|x)
pz(z)

]
+DKL (p(z|x)∥qϕ(z|x))

≥ Ep(x,z)

[
log

qϕ(z|x)
pz(z)

q̃ϕ(z)

q̃ϕ(z)

]
= Ep(x,z) [log qϕ(z|x)]−DKL (pz(z)∥q̃ϕ(z))
+H (pz(z); q̃ϕ(z))

≥ Ep(x,z) [log qϕ(z|x)]︸ ︷︷ ︸
−Lz̃(z,z̃)

−DKL (pz(z)∥q̃ϕ(z))︸ ︷︷ ︸
Dz̃(z,z̃)

=: Iz
ϕ(X;Z), (14)

where the marginal distribution on the output of the encoder
of the direct path is defined as q̃ϕ(z) = Epx(x) [qϕ(z|x)].
The first inequality holds because the KL-divergence

DKL (p(z|x)∥qϕ(z|x)) ≥ 0 and the second holds because the
cross-entropy H (pz(z); q̃ϕ(z)) ≥ 0.

The decoder loss of the direct path is defined as:

Iϕ(X; Z̃) = Eqϕ(x,z)

[
log

qϕ(x, z)

px(x)q̃ϕ(z)

]
= Eqϕ(x,z)

[
log

qϕ(x|z)
px(x)

pθ(x|z)
pθ(x|z)

]
= Eqϕ(x,z)

[
log

pθ(x|z)
px(x)

]
+DKL (qϕ(x|z)∥pθ(x|z))

≥ Eqϕ(x,z)

[
log

pθ(x|z)
px(x)

p̂θ(x)

p̂θ(x)

]
= Eqϕ(x,z) [log pθ(x|z)]−DKL (px(x)∥p̂θ(x))
+H (px(x); p̂θ(x))

≥ Eqϕ(x,z) [log pθ(x|z)]︸ ︷︷ ︸
−Lx̂(x,x̂)

−DKL (px(x)∥p̂θ(x))︸ ︷︷ ︸
Dx̂(x,x̂)

=: Ix
ϕ,θ(X; Z̃), (15)

where qϕ(x, z) = px(x)qϕ(z|x) and where the marginal
distribution on the output of the decoder of the direct
path is defined as p̂θ(x) = Epx(x)

[
Eqϕ(z|x) [pθ(x|z)]

]
.

The first inequality holds because the KL-divergence
DKL (qϕ(x|z)∥pθ(x|z)) ≥ 0 and the second holds because
the cross-entropy H (px(x); p̂θ(x)) ≥ 0.

Finally, the total direct path loss is defined as:

LDirect (ϕ, θ) = −Iz
ϕ(X;Z)− λDIx

ϕ,θ(X; Z̃), (16)

where λD is the trade-off parameter.

APPENDIX B
INFORMATION THEORETIC FORMULATION OF THE

REVERSE PATH LOSS FUNCTION

The decoder loss of the reverse path is defined as:

I(X;Z) = Ep(x,z)

[
log

p(x, z)

px(x)pz(z)

]
= Ep(x,z)

[
log

p(x|z)
px(x)

pθ(x|z)
pθ(x|z)

]
= Ep(x,z)

[
log

pθ(x|z)
px(x)

]
+DKL (p(x|z)∥pθ(x|z))

≥ Ep(x,z)

[
log

pθ(x|z)
px(x)

p̃θ(x)

p̃θ(x)

]
= Ep(x,z) [log pθ(x|z)]−DKL (px(x)∥p̃θ(x))
+H (px(x); p̃θ(x))

≥ Ep(x,z) [log pθ(x|z)]︸ ︷︷ ︸
−Lx̃(x,x̃)

−DKL (px(x)∥p̃θ(x))︸ ︷︷ ︸
Dx̃(x,x̃)

=: Ix
θ (X;Z), (17)

where the marginal distribution on the output of the
decoder of the reverse path is defined as p̃θ(x) =
Epz(z) [pθ(x|z)]. The first inequality holds because the KL-
divergence DKL (p(x|z)∥pθ(x|z)) ≥ 0 and the second holds
because the cross-entropy H (px(x); p̃θ(x)) ≥ 0.
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TABLE VI
MODELS STANDARD DEVIATIONS ON THE NON-NORMALIZED IPHONE DATASET

Model FID x → z̃ ↓ Hamming distance ↓ FID z → x̃ ↓ MSE ↓ SSIM↑

pix2pix 14.04± 0.43 0.24± 0.01 13.5± 0.74 0.006± 0.0002 0.89± 0.01

TURBOpaired
UNET 36.39± 1.15 0.21± 0.01 17.07± 0.19 0.005± 0.0001 0.92± 0.01

The encoder loss of the reverse path is defined as:

Iθ(X̃;Z) = Epθ(x,z)

[
log

pθ(x, z)

p̃θ(x)pz(z)

]
= Epθ(x,z)

[
log

pθ(z|x)
pz(z)

qϕ(z|x)
qϕ(z|x)

]
= Epθ(x,z)

[
log

qϕ(z|x)
pz(z)

]
+DKL (pθ(z|x)∥qϕ(z|x))

≥ Epθ(x,z)

[
log

qϕ(z|x)
pz(z)

q̂ϕ(z)

q̂ϕ(z)

]
= Epθ(x,z) [log qϕ(z|x)]−DKL (pz(z)∥q̂ϕ(z))
+H (pz(z); q̂ϕ(z))

≥ Epθ(x,z) [log qϕ(z|x)]︸ ︷︷ ︸
−Lẑ(z,ẑ)

−DKL (pz(z)∥q̂ϕ(z))︸ ︷︷ ︸
Dẑ(z,ẑ)

=: Iz
ϕ,θ(X̃;Z), (18)

where pθ(x, z) = pz(z)pθ(x|z) and where the marginal
distribution on the output of the encoder of the reverse
path is defined as q̂ϕ(z) = Epz(z)

[
Epθ(x|z) [qϕ(z|x)]

]
.

The first inequality holds because the KL-divergence
DKL (pθ(z|x)∥qϕ(z|x)) ≥ 0 and the second holds because
the cross-entropy H (pz(z); q̂ϕ(z)) ≥ 0.

Finally, the total reverse path loss is defined as:

LReverse (ϕ, θ) = −Ix
θ (X;Z)− λRIz

ϕ,θ(X̃;Z), (19)

where λR is the trade-off parameter.

APPENDIX C
TRAINING DETAILS

For all our experiments, we utilized PyTorch. Additionally,
we used Hydra [62], a framework for structured and easy-to-
maintain configuration files to manage our experiment con-
figurations. Finally, to log our experimental results, we used
wandb [63], a web-based platform that allows for the easy
tracking and visualization of experimental metrics.

The length of one training cycle per model can range
from four hours to four days, depending on the specific
configuration used. This training process was performed using
either four RTX 2080 Ti graphics cards or a single A100 80
GB card. We trained all models from scratch and did not
perform fine-tuning of any pretrained models. Although the
total training time for all experiments was 306 GPU days, the
inference time for the Turbo model applied to 280 test images
is just 15 seconds on a single A100 GPU with 80GB. This
makes the proposed framework usable for real-world tasks
since after training the model the time needed to run it is
just 0.05 seconds per image on average.

We report typical standard deviations for selected models
trained on the non-normalized iPhone dataset in Table VI.
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Fig. 4. Evolution of the mean-squared error during training of the
TURBOpaired

UNET model on the non-normalized iPhone dataset. The x-axis repre-
sents the 400 epochs during training with an evaluation frequency equal to 5.
The y-axis represents the MSE error between x and x̃ at the current epoch.

APPENDIX D
HYPERPARAMETERS OF MODELS’ TRAINING USED IN OUR

EXPERIMENTS

We list here all used hyperparameters for the experiments:
• Acquisition device: Epson Perfection V850 Pro scanner,

iPhone 12 Pro, Samsung Galaxy Note 20 Ultra
• Normalization: non-normalized, normalized
• Dataset setup: paired, unpaired
• Optimizer: Adam with β1 = 0.5, β2 = 0.999
• Learning rate: 0.0002
• Number of epochs: 200 with initial learning rate, 200 to

linearly decay learning rate to zero
• Batch size: 10
• Models: CUT, pix2pix, CycleGAN, TURBO
• Architecture of Generator: CNN-RESNET-CNN, UNET,

Eff-UNET
• Architecture of Discriminator: PatchGAN, ImageGAN
• Adversarial loss: LSGAN, HINGE, WGAN-GP
• Thresholding functions: local, mean, minimum, Otsu,

triangle
• Number of discriminator updates per generator updates

nD: 1, 5
• Probability of label flipping for batch pflip: 0, 0.025
• Probability of adding noise to discriminator’s input for

batch pnoise: 0, 0.2
• Weight of added noise to discriminator’s input for batch

wnoise: 0.3
• Weight of pairwise estimation loss in the latent space

α, ν: 1, 3, 6, 9, 12, 15, 19, 59, 109, 309.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3361798

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


	Introduction
	Printing-imaging channel in CDP authentication pipeline
	Digital twin based on TURBO system
	The intuition behind TURBO system
	Definition of TURBO loss
	The loss of the direct path
	The loss of the reverse path

	Link to Information Bottleneck
	Link to the state-of-the-art translation methods
	Paired setup
	Unpaired setup


	Architectural and Training details
	Structure of encoder and decoder
	Adversarial loss and structure of discriminators
	Stability of training

	Experimental results
	Dataset
	Metrics
	Setups under investigation
	Analysis of obtained results
	Scanner data
	Mobile phones

	Visualization of synthetic samples

	Conclusions
	References
	Appendix A: Information theoretic formulation of the direct path loss function
	Appendix B: Information theoretic formulation of the reverse path loss function
	Appendix C: Training details
	Appendix D: Hyperparameters of models' training used in our experiments 

