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Abstract: This work explores the generation of James Webb Space Telescope (JWSP) imagery via
image-to-image translation from the available Hubble Space Telescope (HST) data. Comparative
analysis encompasses the Pix2Pix, CycleGAN, TURBO, and DDPM-based Palette methodologies,
assessing the criticality of image registration in astronomy. While the focus of this study is not on the
scientific evaluation of model fairness, we note that the techniques employed may bear some limita-
tions and the translated images could include elements that are not present in actual astronomical
phenomena. To mitigate this, uncertainty estimation is integrated into our methodology, enhancing
the translation’s integrity and assisting astronomers in distinguishing between reliable predictions
and those of questionable certainty. The evaluation was performed using metrics including MSE,
SSIM, PSNR, LPIPS, and FID. The paper introduces a novel approach to quantifying uncertainty
within image translation, leveraging the stochastic nature of DDPMs. This innovation not only bol-
sters our confidence in the translated images but also provides a valuable tool for future astronomical
experiment planning. By offering predictive insights when JWST data are unavailable, our approach
allows for informed preparatory strategies for making observations with the upcoming JWST, poten-
tially optimizing its precious observational resources. To the best of our knowledge, this work is the
first attempt to apply image-to-image translation for astronomical sensor-to-sensor translation.

Keywords: image-to-image translation; denoising diffusion probabilistic models; uncertainty
estimation; satellite image generation; image registration

1. Introduction

In this paper, we explore the problem of predicting the visible sky images captured
by the James Webb Space Telescope (JWST), hereafter referred to as ‘Webb’ [1], using the
available data from the Hubble Space Telescope (HST), hereinafter called ‘Hubble’ [2].
There is much interest in this type of problem in fields such as astrophysics, astronomy, and
cosmology, encompassing a variety of data types and sources. This includes the translation
of observations of galaxies in visible light [3] and predictions of dark matter [4]. The
data registered from different sources may be acquired at different times, by different
sensors, in different bands, with different resolutions, sensitivities, and levels of noise. The
exact underlying mathematical model for transforming data between these sources is very
complex and largely unknown. Thus, we will try to address this problem based on an
image-to-image translation approach.

Despite the great success of image-to-image translation in computer vision, its adop-
tion in the astrophysics community has been limited, even though there is a lot of data
available for such tasks that might enable sensor-to-sensor translation, conversion between
different spectral bands, and adaptation among various satellite systems.

Before the launch of missions such as Euclid [5], the radio telescope Square Kilometre
Array [6], and others, there has been a significant interest in advancing image-to-image
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translation techniques for astronomical data to: (i) enable efficient mission planning due to
the high complexity and cost of exhaustive space exploration, allowing for the prioritization
of specific space regions using existing data; and (ii) generate sufficient synthetic data for
machine learning (ML) analysis as soon as the first real images from new imaging missions
are available in adequate quantities.

We focus on the images collected by both the Hubble and the Webb telescopes, taken at
different times, as illustrated in Figure 1. Thus, we present our work as a proof-of-concept
for image-to-image translation, aiming to predict Webb telescope images using those from
Hubble. This technique, once validated, could inform the planning of future missions
and experiments by enabling the prediction of Webb telescope observations from existing
Hubble data.

We assume that, despite the time lapse between Hubble’s and Webb’s data acquisition,
the astronomical scenes of interest have remained relatively stable, conforming to the slow-
changing physics of the observed phenomena. However, there is a substantial disparity in
the imaging technologies of the two telescopes, affecting not only resolution and signal-to-
noise ratio but also the visual representation of the phenomena due to different underlying
physical principles and the images being taken at various wavelengths.

Hubble image Webb image
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Figure 1. Image-to-image astronomical setup under study. Given two imaging systems, Hubble
and Webb, characterized by different bands, resolutions, orbits, and time of image acquisition, the
problem is to predict the Webb images x̃ as close as possible to the original Webb images x from the
Hubble ones z using a learnable model gθ . The considered setup is paired but is characterized by
inaccurate geometrical synchronization between the paired images.

Our study reveals that Hubble and Webb data are typically dis-synchronized by ap-
proximately 3–5 pixels, a discrepancy mainly attributed to synchronization with respect
to celestial coordinates during Webb’s data pre-processing and differing resolutions. Al-
though this misalignment is subtle to the naked eye, we found that it significantly impairs
the accuracy of paired image-to-image translation, highlighting the critical need for precise
data alignment. To address this problem, we introduce two synchronization methods using
computer vision keypoints and descriptors: (a) global synchronization applies a single
affine transformation to the entire image; (b) local synchronization divides the image into
patches and computes individual affine transformations for each patch. We compare the
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impact on the performance of image-to-image translation when using these synchronization
methods against provided synchronization with respect to celestial coordinates.

We compare several types of image-to-image translation methods: (i) fully paired
methods such as Pix2Pix [7] and their variations; (ii) fully unpaired methods such as
CycleGAN [8]; (iii) hybrid methods that can be used for both fully paired setups, fully
unpaired setups, or setups where part of the data is paired, and part of the data is unpaired,
as advocated by the TURBO approach [9]; (iv) denoising diffusion probabilistic models
(DDPM) [10] based image-to-image translation method Palette [11]. We investigate the
influence of pairing and different types of synchronization for the above methods. We
demonstrate that paired methods produce results superior to unpaired ones. At the same
time, the paired methods Pix2Pix and TURBO are subject to the accuracy of synchronization.
Local synchronization produces the most accurate translation results, according to several
metrics of performance.

Furthermore, we show that there is a high potential for uncertainty in the estimation
when using DDPM models for image-to-image translation since they can produce multiple
outputs for one input. This stochastic translation enabled us to establish the regions that
appear to be very stable in each run and the ones that are characterized by high variability.

In summary, we run experiments for image-to-image translation on non-synchronized,
globally synchronized, and locally synchronized Hubble–Webb pairs. We report the re-
sults using multiple metrics: MSE, SSIM [12], PSNR, LPIPS [13], and FID [14]. We use
computer vision-based metrics since we are working with telescope images represented as
RGB images.

The main focus of this paper is not on the scientific inquiry into the fairness of pre-
dictive models. We acknowledge that our results, generated through the image-to-image
translation technique, are subject to limitations inherent to such approaches. The data
and methods utilized may not be exhaustive or infallible, and the results should therefore
be interpreted with caution, as they are not immune to inaccuracies and may contain
hallucinated elements which do not correspond to real astronomical phenomena.

Therefore, to enhance the integrity of the image-to-image translation provided in this
study, we incorporate uncertainty estimation into our methodology. This feature is designed
to assist astronomers by delineating areas within the translated images where the model’s
predictions are reliable from those where the certainty of prediction remains questionable.
Such delineation is crucial in guiding astronomers to discern between regions of high
confidence and those that require further scrutiny or could potentially mislead them.

The proposed approach, with its ability to estimate uncertainty, may serve as an instru-
mental tool for planning future astronomical experiments. In scenarios where observational
data from the Webb telescope are not yet available, our model can offer predictive insights
based on existing Hubble Space Telescope data. This capability acts as a provisional glimpse
into the future, enabling researchers to strategize upcoming observations with the Webb
telescope, potentially optimizing the allocation of its valuable observational time.

Our contributions include: (i) the introduction of image-based synchronization for
astrophysics data in view of image-to-image translation problems; (ii) a comparison of
the image-to-image translation methods for Hubble to Webb translation, and a study of
the effect of synchronization on different models; (iii) the introduction of an innovative
way of uncertainty estimation in probabilistic inverse solvers or translation methods based
on denoising diffusion probabilistic models. In summary, our main contribution is: the
demonstration of the potential of using deep learning-based image-to-image translation in
astronomical imaging, exemplified by Hubble to Webb image translation.

2. Related Work
2.1. Comparison between Webb and Hubble Telescopes

In Figures 2 and 3, the same part of the sky captured by the Hubble and Webb
telescopes is shown in the RGB format. The main differences between the Hubble and
Webb telescopes are: (i) Spatial resolution—The Webb telescope, featuring a 6.5-m primary
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mirror, offers superior resolution compared to Hubble’s 2.4-m mirror, which is particularly
noticeable in infrared observations [15]. This enables Webb to capture images of objects up
to 100 times fainter than Hubble, as evident in the central spiral galaxy in Figure 3.

(ii) Wavelength coverage— Hubble, optimized for ultraviolet and visible light (0.1 to
2.5 microns), contrasts with Webb’s focus on infrared wavelengths (0.6 to 28.5 microns) [16].
While this differentiation allows Webb to observe more distant and fainter celestial objects,
including the earliest stars and galaxies, it is crucial to note that the IR emission captured by
Webb differs inherently from the UV or visible light observed by Hubble. The distinction is
not solely in the resolution or sensitivity between the Hubble Space Telescope (HST) and
the James Webb Space Telescope (JWST) but also in the varying absorption of light by dust
within different galaxy types. However, our proposed image-to-image translation method
does not aim to delve into these observational differences. Instead, our focus is to explore
whether image-to-image translation can effectively simulate Webb telescope imagery based
on the existing data from Hubble. This approach seeks to leverage the available Hubble
data to anticipate and interpret the observations that Webb might deliver, without directly
analyzing the spectral and compositional differences between the images captured by the
two telescopes.

(iii) Light-collecting capacity—Webb’s substantially larger mirror provides over six
times the light-collecting area compared to Hubble, essential for studying longer, dimmer
wavelengths of light from distant, redshifted objects [15]. This is exemplified in Webb’s
images, which reveal smaller galaxies and structures not visible in Hubble’s observations,
highlighted in yellow in Figure 3.

Figure 2. Hubble photo of Galaxy Cluster SMACS 0723 [17].
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Figure 3. Webb image of Galaxy Cluster SMACS 0723 [18].

2.2. Image-to-Image Translation

Image-to-image translation [19] is the task of transforming an image from one domain
to another, where the goal is to understand the mapping between an input image and an
output image. Image-to-image translation methods have shown great success in computer
vision tasks, including transferring different styles [20], colorization [21], superresolu-
tion [22], visible to infrared translation [23], and many others [24]. There are two types of
image-to-image translation methods: unpaired [25] (sometimes called unsupervised) and
paired [26]. Unpaired setups do not require fixed pairs of corresponding images, while
paired setups do. In this paper, we also introduce a hybrid method for image-to-image
translation, called TURBO [9], which is a generalization of the above-mentioned paired
and unpaired setups and provides an information–theoretic interpretation of this method.
For the completeness of our study, we also consider newly introduced denoising diffusion
probabilistic models (DDPM) as image-to-image translation models [11].

2.3. Image-to-Image Translation in Astrophysics

Image-to-image translation has been used in astrophysics for galaxy simulation [3],
but these methods have mostly been used for denoising [27] optical and radio astrophysical
data [28]. The task of predicting the images of one telescope from another using image-to-
image translation remains largely under-researched.

2.4. Metrics

The following metrics were used to evaluate the quality of the generated images:

• Mean square error (MSE) between the original and the generated Webb images;
• To address an issue that the MSE is not highly indicative of the perceived similarity of

images, we calculate the Structural Similarity Index (SSIM) [12] between the original
and generated Webb images;

• Fréchet Inception Distance (FID): proposed in [14]. Instead of a simple pixel-by-pixel
comparison of images, FID estimates the mean and standard deviation of one of the
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deep layers in the pretrained convolutional neural network. It has become one of the
most widely used metrics for the image-to-image translation task;

• Peak Signal-to-Noise Ratio (PSNR): This metric evaluates the quality of the generated
images by comparing the maximum possible power of a signal (original images) to
the power of the same images after distortion (generated images). PSNR is often used
as a measure of reconstruction quality in image compression and restoration tasks;

• Learned Perceptual Image Patch Similarity (LPIPS): proposed in [13]. LPIPS measures
the perceptual similarity between images by using deep features extracted from a
pretrained neural network. It is designed to better reflect human perception of image
similarity compared to traditional metrics like MSE or PSNR.

3. Proposed Approach
3.1. Dataset

We use images from the Hubble and Webb telescopes as the dataset. In particular,
we use images of Galaxy Cluster SMACS 0723 [29]. An example of the image is shown
in Figure 2. For the Webb, we use post-processed NIRCam images [30], available as RGB
images, provided by ESA/NASA/STScI. Webb images are available publicly at [17]. We
then select the corresponding Hubble images [18]. Since the Hubble images are smaller than
Webb images, we upsampled them using bicubic interpolation for comparison purposes.

3.2. Image Registration

Image registration or synchronization is needed to ensure that pixels in different data
sources represent the same position in observed space. Even though astronomical data are
generally synchronized, there is always room for synchronization improvement, especially
at the local level. In this section, we compare three synchronization setups for Hubble
to Webb translation: synchronization with respect to celestial coordinates, algorithmic or
automated global synchronization, and local synchronization, as schematically shown in
Figure 4.

Hubble image Webb imageSynhronization

Manual

Global affine

Local affine
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AT

Figure 4. Synchronization setups under investigation in paired image-to-image translation problems:
synchronization with respect to celestial coordinates; global synchronization, when images are
matched via a global affine transform A; and local synchronization, when images are divided into
local blocks and matched via a set of local affine transforms Ai, 1 ≤ i ≤ T.

Synchronization with respect to celestial coordinates. In this setup, the data are used
directly with the provided synchronization with respect to celestial coordinates.
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Global synchronization. The data are synchronized using SIFT [31] feature descriptors
and the RANSAC [32] matching algorithm. The feature descriptors are computed for the
entire image from both the Hubble and Webb telescopes.

Local synchronization. The data are synchronized using SIFT feature descriptors and
the RANSAC matching algorithm, with the feature descriptors being computed from image
patches. Specifically, input images from both the Hubble and Webb telescopes are divided
into a grid made of nine patches, arranged in a three × three configuration both vertically
and horizontally, before the cropping process.

The non-synchronized and synchronized Webb and Hubble images can be viewed in
our demo: hubble-to-webb.herokuapp.com (accessed on 8 February 2024).

3.3. TURBO
3.3.1. Mathematical Interpretation

The TURBO framework [9] is based on an auto-encoder (AE) structure and is repre-
sented by an encoder qϕ(z|x) and a decoder pθ(x|z) that are deep networks parametrized
by the parameters ϕ and θ, respectively. A block diagram for the TURBO system is shown
in Figure 5.

Figure 5. TURBO scheme: direct (left) and reverse (right) paths.

According to the framework we used, given a pair of data samples (Hubble and Webb
images) (x, z) ∼ p(x, z), where z is a Hubble image and x is a Webb image, the system
maximizes the mutual information between x and z for both encoder and decoder in direct
and reverse paths.

Two approximations of the joint distribution can be defined as follow:

qϕ(x, z) := qϕ(z|x)

real
data︷︸︸︷
p(x) = qϕ(x|z)

synthetic
data︷ ︸︸ ︷

q̃ϕ(z) , (1)

pθ(x, z) := pθ(x|z)︸ ︷︷ ︸
known

networks

p(z) = pθ(z|x)︸ ︷︷ ︸
unknown
networks

p̃θ(x) , (2)

the marginal distributions are approximated through reparametrizations involving un-
known networks. These are represented as q̃ϕ(z) =

∫
qϕ(x, z)dx and p̃θ(x) =

∫
pθ(x, z)dz,

relating to the synthetic variables in latent spaces. Furthermore, in our work, we also
utilize two approximated marginal distributions for the reconstructed synthetic variables
in spaces, denoted as q̂ϕ(z) =

∫
p̃θ(x)qϕ(z|x)dx and p̂θ(x) =

∫
q̃ϕ(z)pθ(x|z)dz.

The variational approximation is considered for the direct path of the TURBO system
based on the maximization of two bounds on mutual information for the latent space and
the reconstruction space:

I(X; Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
≥ Ep(x,z)

[
log qϕ(z|x)

]︸ ︷︷ ︸
−Lz̃(z,z̃)

− DKL
(

p(z)∥q̃ϕ(z)
)︸ ︷︷ ︸

Dz̃(z,z̃)

,
(3)

https://hubble-to-webb.herokuapp.com/
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Iϕ(X; Z̃) = Eqϕ(x,z)

[
log

qϕ(x, z)
p(x)q̃ϕ(z)

]
≥ Eqϕ(x,z)[log pθ(x|z)]︸ ︷︷ ︸

−Lx̂(x,x̂)

− DKL(p(x)∥ p̂θ(x))︸ ︷︷ ︸
Dx̂(x,x̂)

.
(4)

Thus, the network is trained in such a way to maximize a weighted sum of (3) and (4) in
order to find the best parameters ϕ and θ of the encoder and the decoder, respectively. This
is achieved in the direct path by minimising the Ldirect loss, representing the left network
shown in Figure 5:

Ldirect(ϕ, θ) = Lz̃(z, z̃) +Dz̃(z, z̃) + λDLx̂(x, x̂) + λDDx̂(x, x̂), (5)

where z is real Hubble image, x is real Webb image, z̃ predicted Hubble image generated
by qϕ(z|x) from real Webb image x, x̂ is Webb image reconstructed from generated Hubble
image z̃, Lz̃(z, z̃) reconstruction loss between real and generated Hubble images, Dz̃(z, z̃)
discriminator loss for generated Hubble images, Lx̂(x, x̂) present cycle reconstruction
loss between real and reconstructed Webb images, Dx̂(x, x̂) is discriminator loss in the
reconstructed Webb images, and λD is a parameter controlling the trade-off between the
terms in (3) and (4).

The variational approximation for the reverse path is:

I(X; Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
≥ Ep(x,z)[log pθ(x|z)]︸ ︷︷ ︸

−Lx̃(x,x̃)

− DKL(p(x)∥ p̃θ(x))︸ ︷︷ ︸
Dx̃(x,x̃)

,
(6)

Iθ(X̃; Z) = Epθ(x,z)

[
log

pθ(x, z)
p̃θ(x)p(z)

]
≥ Epθ(x,z)

[
log qϕ(z|x)

]︸ ︷︷ ︸
−Lẑ(z,ẑ)

− DKL
(

p(z)∥q̂ϕ(z)
)︸ ︷︷ ︸

Dẑ(z,ẑ)

.
(7)

The reverse path loss Lreverse(ϕ, θ) is represented by the right network shown in
Figure 5:

Lreverse(ϕ, θ) = Lx̃(x, x̃) +Dx̃(x, x̃) + λRLẑ(z, ẑ) + λRDẑ(z, ẑ), (8)

where x̃ is a Webb image, generated by pθ(x|z) from a real Hubble image z, ẑ is a Hubble
image reconstructed from generated Webb image x̃, Lx̃(x, x̃) is reconstruction loss between
the real and generated Webb images, Dx̃(x, x̃) is discriminator loss in the generated Webb
images, Lẑ(z, ẑ) is cycle reconstruction loss between real and reconstructed Hubble images,
Dẑ(z, ẑ) discriminator loss in the reconstructed Hubble images, and λR is a parameter
controlling the trade-off between (6) and (7).

A detailed derivation and analysis of TURBO can be found in [9].
The TURBO method is versatile and adaptable to various setups. It supports a fully

paired configuration, utilizing direct and reverse path losses, provided above, which are
applicable when data pairs are fully accessible during training. In cases where such pairs
are unavailable for training, an unpaired configuration is viable. Additionally, a mixed
setup can be employed, combining both paired and unpaired data. This method imposes
no constraints on the architecture of the encoder and decoder, offering a broad range of
architectural choices.

3.3.2. Paired Setup: Pix2Pix as Particular Case of TURBO

Pix2Pix [7] image-to-image translation method can be viewed as a paired case of
TURBO approach, with only reverse path, where λR = 0 in (9):

LPix2Pix(θ) = Lx̃(x, x̃) +Dx̃(x, x̃). (9)

Thus, the direct path is not used as the training of the encoder–decoder pair and
Pix2Pix uses uses the deterministic decoder x̃ = gθ(z).
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3.3.3. Unpaired Setup: CycleGAN as Particular Case of TURBO

The CycleGAN [8] image-to-image translation method can be viewed as a particular
case of the TURBO approach, with both a direct and reverse path, with cycle reconstruction
losses and discriminator losses for predicted images, with:

LCycleGAN (ϕ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂) + λTDx̃(x, x̃) + λTλRLẑ(z, ẑ), (10)

CycleGAN does not have paired components in the latent space in comparison
to TURBO.

3.4. Denoising Diffusion Based Image-to-Image Translation

Conditional denoising diffusion probabilistic models [10] for image-to-image transla-
tion apply a denoising process that is conditioned on the input image [11]. Image-to-image
diffusion models are conditional models of the form pθ(x|z), where x is a generated Webb
image, and z is a Hubble image, used as a condition. In fact, the DDPM models are derived
from the Variational Autoencoder [33] with the decomposition of the latent space of z as a
hierarchical Markov model zT → zT−1 → · · · → z0 [34].

In practice, the conditional image is concatenated to the input noisy image. During
training, detailed in Algorithm 1, we use a simple DDPM training loss (11):

LDDPM(θ) = Et,z,x0,ϵ

[∥∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, z, t

)∥∥∥2
]

, (11)

where x0 is Webb image, z is the input Hubble image, used in conditioning, ϵ is Gaussian
zero mean unit variance noise added at step t, ϵθ is conditional DDPM, and ᾱt is noise scale
parameter, added at step t.

Algorithm 1 Training a denoising model ϵθ

1: Define noise schedule β1, β2, . . . , βT
2: Compute ᾱt for t = 1 to T using ᾱt = ∏t

s=1(1 − βs)
3: repeat
4: (x, z) ∼ p(x, z)
5: ϵ ∼ N (0, I)
6: t ∼ 1 . . . T
7: Take a gradient descent step on ∇θ

∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, z, t

)∥∥2

8: until converged

In the inference phase of the conditional denoising diffusion probabilistic model, de-
tailed in Algorithm 2, the model starts with an initial noisy sample xT from a Gaussian
distribution N (0, I); then, the model utilizes a learned denoising function ϵθ , which incor-
porates the conditioning Hubble image x, to iteratively denoise the image at each timestep
t. The image is updated according to (12):

xt−1 =
1√
ᾱt

(
xt −

1 − ᾱt√
1 − ᾱt

ϵθ(xt, z, t)
)
+

√
1 − ᾱtϵ, (12)

where ϵ is sampled from Gaussian noise. This denoising process is repeated for T steps
until the final image x0 is obtained.
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Algorithm 2 Inference in T iterative refinement steps

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: xt−1 = 1√

ᾱt

(
xt − 1−ᾱt√

1−ᾱt
ϵθ(xt, z, t)

)
+
√

1 − ᾱtϵ

5: end for
6: return x0

4. Uncertainty Estimation

In this section, we show how denoising diffusion probabilistic models can be used
for the prediction of uncertainty maps. By design, DDPMs are stochastic generators at
each sampling step, so it is possible to generate multiple predictions for the same input.
The ensemble of predictions allows us to compute the pixel-wise deviation maps that
visualize the uncertainty of the predictions. In Figure 6, we display the true uncertainty

map U, computed as
√

∑N
i=1(x̂i−x)2

N , where x is the target Webb image, x̂i is the i-th predicted
Webb image, ¯̂x is the averaged predicted image estimated from x̂i, and N is the number
of generated images. In our experiments, we have used 100 generations to compute the

estimated uncertainty map Û, computed as

√
∑N

i=1(x̂i−x̂)
2

N .
The uncertainty map can be used for analyzing and evaluating the DDPM results

by indicating the regions of low and high variability as a measure of uncertainty in each
experiment. It is remarkable that this approach is very discriminating for the different
types of space objects: point objects (shown in Figures 7–9), galaxies (shown in Figure 8),
and stars (shown in Figure 9). Furthermore, we have found that the method is able to
detect the presence of point source objects in the estimated uncertainty maps, while such
objects were not usually directly detectable in the Hubble images or in the predicted Webb
images (highlighted with orange boxes in Figures 7 and 9). The point sources that were
not present in the Hubble images were not completely predicted in the Webb images when
considering these images independently. However, the use of an uncertainty map allowed
us to spot their presence in the uncertainty maps, which are highlighted with red boxes in
the above-mentioned figures. To further evaluate the performance, we introduce the Peak

Signal-to-Uncertainty Ratio (PSUR), computed as PSUR = 10 · log10

(
MAX2

x
mean(Û)

)
dB, where

MAXx is the maximum possible pixel value of the image. This metric, analogous to PSNR
but using the uncertainty map instead of MSE, offers a measure of how distinguishable the
true signal is from the uncertainty inherent in the prediction process. We compute PSUR
value for every uncertainty map, shown in Figures 6–9.

(a) (b) (c) (d)

Figure 6. Uncertainty map visualization. (a) x target Webb image, (b) ¯̂x predicted image, averaged
from x̂i, (c) true uncertainty, (d) estimated uncertainty. The estimated PSUR: 28.99 dB.
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(a) (b)

(c) (d)

Figure 7. Uncertainty map for point sources: (a) target Webb image; (b) predicted Webb image;
(c) true uncertainty; (d) estimated uncertainty. The point sources, that were missed, and for which
there is no sign in the uncertainty map, are highlighted with a red box. The point sources are missed,
but for which there is a sign in the uncertainty map, are highlighted with an orange box. The
estimated PSUR: 26.72 dB.

(a) (b)

(c) (d)

Figure 8. Uncertainty map for the galaxy: (a) target Webb image; (b) predicted Webb image; (c) true
uncertainty with respect to the target image; (d) estimated uncertainty without the target image that
reflects the variability in the generated images. The estimated PSUR: 28.99 dB.
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(a) (b)

(c) (d)

Figure 9. Uncertainty map for the star: (a) target Webb image; (b) predicted Webb image; (c) true
uncertainty; (d) estimated uncertainty. The point sources, that were missed, and for which there is
no sign in the uncertainty map, are highlighted with a red box. The point sources are missed in the
predicted Webb, but there is a sign of one in the uncertainty map, which means it was present in
some of the predictions. The estimated PSUR: 24.44 dB.

5. Implementation Details

We use PyTorch 1.12 [35] deep learning framework in all our experiments.
Data. We use crops from Hubble and Webb images of size 256 × 256 pixels in

each experiment. All of the images used in training and validation are available at
github.com/vkinakh/Hubble-meets-Webb, (accessed on 8 February 2024). We apply
random horizontal and vertical flipping to each image pair of Hubble–Webb images as
augmentation.

Pix2Pix and CycleGAN. In the experiments with Pix2Pix and CycleGAN, we use
a convolutional architecture consisting of two convolutional layers for downsampling,
nine residual blocks, and two transposed convolutional layers for upsampling for both the
encoder and decoder. As discriminators, we use PatchGAN [7] with LSGAN loss [36], as
provided in the original implementations. During training, we use an Adam [37] optimizer
with a learning rate of 2× 10−4 and a linear learning rate policy weight decay every 50 steps.
Each model is trained for 100 epochs with a batch size of 64. For the experiments, we have
used NVIDIA RTX 2080Ti GPU.

TURBO. In the experiments with TURBO [9], we use the same convolutional architec-
tures for the encoder and decoder as in the Pix2Pix and CycleGAN experiments. TURBO
consists of two convolutional generators: the first, qϕ(x, z), generates Webb images from
Hubble ones, and the second, pθ(x|z), generates Hubble images from Webb ones. We
use four PatchGAN [7] discriminators: one for generated Webb samples Dxx̃(x̃), one for
reconstructed Webb samples Dxx̂(x̂), one for generated Hubble images Dzz̃(z̃), and one for
reconstructed Hubble images Dzẑ(ẑ). Alternatively, the TURBO model can only use two
discriminators: the first Dz for generated and reconstructed Webb images, and the second
Dx for generated and reconstructed Hubble images. The results using two discriminators
are shown in the ablation study in Table 1. As estimation and cycle losses, we use the
ℓ1-metric. We use the LSGAN discriminator loss [36], as in the Pix2Pix and CycleGAN
experiments. Similarly, we use the Adam optimizer with a learning rate of 2 × 10−4 and a
linear learning rate policy with decay every 50 steps. The model is trained for 100 epochs
with a batch size of 64. For the experiments, we have used NVIDIA RTX 2080Ti GPU.

DDPM (Palette). In the experiments, we use a DDPM image-to-image translation
model proposed in [11]. We use a UNet [38]-based noise estimator, with self-attention [39].
During training, we use a linear beta schedule with 2000 steps, 10−6 start, and 0.01 end.
During inference, we use a DDPM scheduler with 1000 steps, 10−6 start, and 0.01 end. The
model is trained for 1000 epochs with a batch size of 32. For the experiments, we have used
NVIDIA A100 GPU.

https://github.com/vkinakh/Hubble-meets-Webb
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During inference, since our images exceed 256 × 256 pixels, we employ a method
known as stride prediction to predict patches of size 256 × 256 using a selected stride value.
This method works systematically across the image: starting from the top-left corner at
position (0, 0), we predict the first patch, then move horizontally by stride s to predict
the next, proceeding row by row until the entire image is covered. If the bottom or right
edge is reached, the next row begins just below the starting point or back at the left edge,
respectively. After predicting all patches, we save the images and track the prediction count
for each pixel. The final pixel value is determined by averaging across all predictions for
that pixel, ensuring a seamless image reconstruction.

Table 1. Ablation studies on paired models Pix2Pix and TURBO on locally synchronized data. All
results are obtained on Galaxy Cluster SMACS 0723. The label “TURBO same D” corresponds to an
approach, when the same discriminator is used for generated and reconstructed Webb and Hubble
images. The label “LPIPS” denotes adding perceptual similarity loss.

Method MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID↓
L1 0.002 0.93 26.94 0.47 83.32
L2 0.002 0.93 26.98 0.47 76.03

L1 + L2 0.002 0.93 26.93 0.47 82.71
L1+ LPIPS 0.002 0.93 26.68 0.44 72.84

Pix2Pix 0.002 0.93 26.78 0.44 54.58
Pix2Pix +

LPIPS 0.003 0.93 27.02 0.44 58.86

TURBO 0.003 0.92 25.88 0.41 43.36
TURBO +

LPIPS 0.003 0.92 25.91 0.39 50.83

Lreverse 0.002 0.93 26.15 0.45 70.51
Lreverse +

LPIPS 0.002 0.93 26.13 0.46 67.52

TURBO same
D 0.002 0.92 26.04 0.4 55.29

TURBO same
D + LPIPS 0.002 0.92 26.13 0.39 55.88

6. Results

In this section, we report image-to-image translation results for the prediction of Webb
telescope images based on Hubble telescope images. In Table 2, we report results for
four setups: (a) unpaired setup; (b) paired setup with the synchronization with respect to
celestial coordinates, where images were synchronized by hand; (c) paired setup with global
synchronization, where the full image was synchronized using a single affine transform;
and (d) paired setup with local synchronization, where the images were split into multiple
patches and then each of the Hubble and Webb patches were synchronized individually.
For each setup, we have defined a training set that covers approximately 80% of the input
image of the galaxy clusters SMACS 0723, and the rest is used as a validation set for results.
We make sure that the training and validation set cover different parts of the sky and never
overlap even for a single pixel. When generating images for evaluation, since the validation
images are larger than 256× 256, we have used the stride prediction described above with a
stride of f our. It is shown in Table 2 that the synchronization of the data is very important,
as all of the considered models perform best when the data are locally synchronized. This
fact was not well addressed in previous studies, to the best of our knowledge. Also, we
show that the DDPM-based image-to-image translation model outperforms the CycleGAN,
Pix2Pix, and TURBO models in terms of MSE, SSIM, PSNR, FID and LPIPS metrics. The
only downside of the DDPM model is its inference time, which is 1000 times longer than
the inference time of Pix2Pix, CycleGAN and TURBO. This might be a serious limitation in
practice, considering the size and number of astronomical images.
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Table 2. Hubble-to-Webb results. All results are obtained on a validation set of Galaxy Cluster
SMACS 0723.

Method MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓
unpaired

CycleGAN 0.010 0.83 20.11 0.48 128.12
paired: synchronization with respect to celestial coordinates

Pix2Pix 0.007 0.87 21.37 0.5 102.61
TURBO 0.008 0.85 20.87 0.49 98.41
DDPM

(Palette) 0.003 0.88 25.36 0.43 51.2

paired: global synchronization
Pix2Pix 0.003 0.92 25.85 0.46 55.69
TURBO 0.003 0.91 25.08 0.45 48.57
DDPM

(Palette) 0.002 0.94 28.12 0.45 43.97

paired: local synchronization
Pix2Pix 0.002 0.93 26.78 0.44 54.58
TURBO 0.003 0.92 25.88 0.41 43.36
DDPM

(Palette) 0.001 0.95 29.12 0.44 30.08

In Table 3, we compare parameter counts and inference times for a 256 × 256 image
from the models considered in the study. The DDPM model is particularly noteworthy
for its extensive parameter count, with both trainable and inference parameters reaching
62.641 Mio. It also necessitates 1000 generation steps, contributing to a longer inference time
of approximately 42.77 seconds. Conversely, Pix2Pix, CycleGAN, and Turbo demonstrate a
more streamlined parameter structure. These models employ generators with a uniform
parameter count of 11.378 Mio and discriminators with 2.765 Mio parameters. Pix2Pix
operates with one generator and one discriminator, CycleGAN with two of each, and Turbo
with two generators and four discriminators. Despite the architectural differences, these
models maintain compact trainable parameters, ranging from 14.143 Mio to 33.816 Mio,
and achieve notably swift inference times, clocked at around 0.07 seconds. The inference
time is averaged over 100 generations for each model on a single RTX 2080 Ti GPU with a
batch size of one.

Table 3. Analysis of parameter complexity and inference time in image-to-image translation models.

Model Trainable Params Inference Paras Inference Time

DDPM (1000 steps) 62.641 Mio 62.641 Mio 42.77 ± 0.18 s
Pix2Pix 14.143 Mio 11.378 Mio 0.07 ± 0.004 s

CycleGAN 28.286 Mio 11.378 Mio 0.07 ± 0.004 s
TURBO 33.816 Mio 11.378 Mio 0.07 ± 0.004 s

In Table 1, we perform ablation studies on the paired TURBO and Pix2Pix image-to-
image translation models. We compare these models trained under various conditions:
(a) with the L1 loss, which is the mean absolute error, (b) with the L2 loss, which is the
mean squared error, (c) with both L1 and L2 losses, (d) with L1 loss and the Learned
Perceptual Image Patch Similarity (LPIPS) loss using a VGG encoder [13]. We also explore
Pix2Pix configurations, such as Pix2Pix with L1 loss plus a discriminator, Pix2Pix com-
bined with LPIPS loss and a VGG encoder, along with variations of the TURBO model:
TURBO with LPIPS loss, TURBO operating only in reverse pass, and TURBO using the
same discriminator for both generated and reconstructed images. Models are trained and
evaluated on data synchronized locally. As Table 1 indicates, Pix2Pix models and those
without a discriminator perform better on paired metrics (MSE, PSNR, SSIM), whereas
TURBO-based methods excel in image quality metrics (LPIPS, FID). Notably, the DDPM-
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based image-to-image translation method outperforms other methods discussed in the
ablation study.

7. Conclusions

In this paper, we have proposed the use of image-to-image translation approaches for
sensor-to-sensor translation in astrophysics for the task of predicting Webb images from
Hubble. The novel TURBO framework serves as a versatile tool that outperforms existing
GAN-based image-to-image translation methods, offering better quality in generated Webb
telescope imagery and information-theoretic explainability. Furthermore, the application of
DDPM for uncertainty estimation introduces a probabilistic dimension to image translation,
providing a robust measure of reliability previously unexplored in this context. We show
the importance of synchronization in paired image-to-image translation approaches.

This research not only paves the way for improved astronomical observations by
leveraging advanced computational techniques but also advocates for the application of
these methods in other domains where image translation and uncertainty estimation are
crucial. As we continue to venture into the cosmos, the methodologies refined here will
undoubtedly become instrumental in interpreting and maximizing the utility of the data
we collect from advanced telescopes.

8. Future Work

Out future research will include an approach to refine and enhance the methodologies
discussed in this paper. A particular focus will be directed towards improving the TURBO
model, which, while being computationally efficient, currently lags behind DDPM in terms
of performance. TURBO model improvement will be mostly focused on architectural
improvements of generators. In parallel, we plan to undertake a thorough investigation
into the resilience of our applied methods against various data preprocessing techniques,
including different forms of interpolation. This study aims to ensure the robustness and
adaptability of our models across a spectrum of data manipulation scenarios. Moreover, the
exploration of existing sampling techniques within DDPMs will be pursued with the goal
of expediting inference times. This focus is expected to significantly improve the models’
efficiency, rendering them more suitable for real-time applications.

The current research specifically focuses on the analysis of RGB pseudocolor images.
A significant portion of our future work will be dedicated to the meticulous training
and evaluation of the proposed models on raw astrophysical data. This will involve the
integration of specialized astrophysical metrics designed to align with the unique properties
of such data, thereby assuring that our models are not only statistically sound but also
truly resonate with the practical demands and intricacies of astrophysical research. We
aspire to bridge the gap between theoretical robustness and real-world applicability, setting
the stage for transformative developments in the field of image-to-image translation in
astrophysical data analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

GAN Generative adversarial network
DDPM Denoising diffusion probabilistic model
MSE Mean squared error
PSNR Peak signal to noise ratio
LPIPS Learned perceptual image patch similarity
FID Fréchet inception distance
RGB Red, green, blue
AE Auto-encoder
SSIM Structural similarity index measure
TURBO Two-way Uni-directional Representations by Bounded Optimisation
HST Hubble Space Telescope
JWST James Webb Space Telescope
LSGAN Least Squares Generative Adversarial Network
SIFT Scale-Invariant Feature Transform
RANSAC Random Sample Consensus
ESA European Space Agency
NASA National Aeronautics and Space Administration
STScI Space Telescope Science Institute
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