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1 Introduction

The Standard Model (SM) is the current apex of theoretical physics, describing the electro-
magnetic, weak and strong interactions with unparalleled precision. Unfortunately, it is still
far from complete, as several phenomena remain unexplained. In order to create a “theory of
everything”, one would not only need to combine the SM with general relativity, but also
provide an explanation for many other issues, including the existence of neutrino masses, the
origin of the matter-antimatter asymmetry, and most importantly, the origin of dark matter.
To solve these problems, researchers are collaborating to formalise new theories, design, build
and carry out new experiments, as well as simulate and analyze research data.

One of the most renowned experimental facilities, the Large Hadron Collider (LHC)
was constructed with the purpose of testing the SM in the high energy regime. The last
elementary particle predicted by the SM, the Higgs boson, was discovered in 2012 [1, 2]. Since
then, LHC research has shifted towards precision measurements and searches for beyond
the Standard Model (BSM) effects.
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Many extensions of the SM imply the existence of as yet undiscovered massive particles,
often associated with proposed new symmetry groups. If a new particle has a narrow decay
width, the straightforward method is to search for a resonant peak in the spectrum of a
mass-like observable, such as the invariant mass of a dijet event. However, such a bump hunt
is not completely free of assumptions. Often complex analytical functions need to be chosen
to model the background distribution, with the possibility to introduce spurious signals
and varying sensitivity under the assumption of different functional forms. Furthermore,
additional observables or fiducial cuts need to be chosen and optimised to enhance sensitivity
in the case where potential signal yields are low, causing searches to become more model-
specific. To broaden the range of signal models covered by searches one may employ the
model-unspecific search steategies [3–5].

Over the past decade, machine learning-based algorithms have become increasingly
popular for solving a multitude of problems. Deep learning, in particular, has gained
popularity for various tasks, with large neural networks being utilised. For example, many
methods were implemented to perform anomaly detection (AD) tasks in various industries.
Some of these AD methods have been repurposed and extended to support BSM searches [6–85]
(see refs. [86–89] for a comparison of various ML assisted BSM methods and refs. [36, 90] for
a comparison of weakly supervised and unsupervised approaches). The ATLAS collaboration
produced the first experimental results for such searches applied to experimental data using
weakly supervised methods [91] and unsupervised ML anomaly detection methods [80, 92].
However, these efforts have not observed any significant deviations from the SM expectation.

Many AD approaches rely on the assumption that any new signal would form a set of
outliers. However, in a bump hunt the assumption is instead that any new signal would be
localised in some feature space, in particular in an invariant mass spectrum. Weakly supervised
approaches, on the other hand, aim to enhance the sensitivity by applying a cut on a classifier
trained directly on the data. However, in both instances the same bump hunt restrictions
apply with either functional forms or input observables impacting the sensitivity to a model.

In this work we introduce a new data-driven method, Cluster Scanning (CS), which
builds on the foundations of the bump hunt but addresses several limitations. By leveraging
more information from the event CS is able to enhance sensitivity to potential signals without
enforcing any model specific assumptions, and can also provide a direct estimate of the
background distribution. The proposed approach complements existing techniques and is
designed to be computationally efficient.

The paper is structured as follows. In section 2, we briefly describe the LHCO R&D
dataset [93], commonly used to benchmark the performance of anomaly detection techniques,
and introduce our data preprocessing steps. Section 3 touches on the general topic of bump-
hunting strategies in the literature, introduces the novel CS method, and discusses similarities
and differences between them. In section 4 we provide the results of applying CS in an
anomaly search. Finally, we draw conclusions in section 5.
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Figure 1. From left to right: average of all 2M available QCD jet images, average image of all 100K
lighter jets in a Z ′ event and average image of all 100K heavier jets in a Z ′ event before smearing and
pixel scaling.

2 Dataset

The LHCO R&D dataset consists of one million background Standard Model dijet events
(also subsequently referred to as QCD) and 100 000 signal BSM Z ′ → XY events, where
massive particles with mX = 500 GeV and mY = 100 GeV decay into quark-antiquark pairs.
The resonance itself has a mass of mZ′ = 3.5 GeV. This anomaly model is discussed in
detail in ref. [94].

All the events were produced using Pythia 8.219 [95] and Delphes 3.4.1 [96–98]
using default settings. The jets were clustered using an anti-kT algorithm [99] with R = 1
using FastJet [100] with a python interface provided through the pyjet library in Scikit-
HEP [101]. Jets are required to have pT > 1.2 TeV and fall within |η| < 2.5.

2.1 Jet images

In addition to the di-jet invariant mass (mjj) of the event, used in a bump hunt, we extract
additional information from the image representations of the two jets. This allows for a more
model agnostic approach than selecting specific jet substructure observables. The jet images
are processed following a prescription similar to that used in refs. [11, 102–104] from the η,
ϕ and pT of the jet constituents. Individual jet images are centred, rotated, and flipped in
order to provide a consistent input to a convolutional neural network, reducing the number
of symmetries the ML method would need to learn.

The jet images are cropped to [−0.8, 0.8] × [−0.8, 0.8] in η − ϕ space relative to the jet
centre, binned with a 40 × 40 pixel grid, and normalised such that the sum of all pixels is
equal to one. Figure 1 shows the average jet images for QCD background, and the separate
averages of all lighter (mostly Y ) and heavier (mostly X) jets in each Z ′ event.

Despite being used in many applications, the jet image representation has two main
drawbacks, namely the sparsity of non-zero pixels (see appendix B) and the imbalance in
the magnitudes of their intensities. This is particularly problematic for approaches that
depend on the L2 (Euclidean) distance. We address both of these problems with the solutions
introduced in refs. [38, 63].
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To take the soft constituents into account, which have intensities orders of magnitudes
lower than hard constituents, we apply a non-linear scaling to all pixels of Iij → Iγ

ij . To
address sparsity we convolve (smear) the whole image with a two-dimensional Gaussian kernel
with an isotropic standard deviation σk. We find that using a value of γ = 0.5 for the pixel
scaling alongside σk = 1 for the Gaussian kernel provides a adequate solution to both issues
without excessive impact on the structure of the jets.

3 Method

3.1 Bump hunt

The bump hunt approach is a standard method used to search for excesses over a non-resonant
background in HEP (high-energy physics) data. This method usually follows four main steps
that we briefly discuss below. Each of these steps is a complex topic in itself with several
different approaches in the literature, thus for our study, we choose only simplified and
basic approaches.

3.1.1 Signal enrichment

Signal enrichment, in general, refers to the selection of a subset of experimental data in
such a manner that the fraction of signal events in it is increased compared to the initial
sample. Most often, this is done by cutting out a region of the observable space where
the signal is expected to be abundant compared to the rest of the space, typically using
a theoretical model of the signal of interest.

These approaches, despite being sensitive to specific signal processes, make the search
less model-agnostic and are ill-suited for general anomaly detection searches. Alternatively,
one can hope to define a signal-rich region of the experimental data using a plethora of
unsupervised ML (machine learning) techniques, which are expected to provide enhanced
sensitivity over a wider range of potential signal processes.

In our particular example of LHCO data, we choose to explore a wide, smoothly falling
region of the spectrum of dijet events with invariant dijet mass mjj from 3000 GeV to 4600 GeV.
We choose this lower bound to avoid the turn on curve of the mass distribution, resulting
from the jet trigger, and the upper bound is selected to remain in a region with relatively
high statistics, so that we work in the region where the fit functions from subsection 3.1.2
are applicable. This interval contains, in total, around 380,000 QCD events and nearly all
Z ′ events. We divide this region into 16 non-intersecting bins with 100 GeV width each,
as in refs. [105, 106].

3.1.2 Background estimation

To perform a hypothesis test, one must first postulate a null hypothesis, which in counting
experiments takes form of the expected background coming from the Standard Model processes.
Often the background prediction relies on a theoretical basis to calculate the cross sections
of the hard process and a simulation to account for detector response and measurement
uncertainties. Still there are a number of searches where theory and simulation cannot provide
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a reliable background estimate. In these cases the background has to be estimated from the
data itself in an empiric manner, using some general assumptions.

In dijet-like searches a background is often estimated by fitting a function of the form

f(x) = p1(1 − x)p2xp3+p4 ln(x)+p5 ln(x2) (3.1)

to a smoothly falling part of the dijet mass distribution [107–122], where x = mjj/
√

s. This
function is referred to as the “n-parameter dijet fit function”, where n is the number of
nonzero free parameters pi used in the function. Despite being a good fit to the simulated
data, this functional form is still an empirical assumption and thus is subjects to a systematic
error. Furthermore, after applying some selection criteria on the events which could be
correlated with mjj , this function may no longer well describe the resulting distribution.

More advanced methods of fitting, such as the Sliding Window Fit (SWIFT) [123] and the
ABCD method used in [124, 125] are other methods that reduce the assumption of a functional
form but introduce their own assumptions instead. However, due to the simplicity and wide
use of the n-parameter fit function, we choose to use global 3-parameter and 4-parameter
function fits as the benchmark analysis strategy. Further details of the (pseudo-)analysis on
the LHCO R&D data performed using these background estimates are given in appendix A.
To access the upper bound on the performance of all background estimation methods, we
use the underlying background distribution as an idealised fit, i.e. a fit with no systematic
error. The (pseudo-)analysis using this is also described in appendix A.

3.1.3 Test statistic definition and calibration
There are several ways to calculate a global test statistic for two spectra. In HEP one of the
more popular tests in model agnostic searches, called BumpHunter [126], relies on the maximal
local significance (MLS) as the test statistic, where it is computed using a range of different
windows over the spectrum. One of the benefits of the MLS test statistic is its simplicity and
that it is well suited for signals that give rise to narrow, localised resonances. Here the MLS
is applied to the binned mjj distributions of the data. Given a set B = {b1, . . . , bnbins} of non-
intersecting bins with Nsig+bkg,b events or jets from the signal-rich (experimental) distribution
and Nbkg,b events or jets from the background estimation, the MLS can be written as

MLS = max
b∈B

Zb = max
b∈B

(CDF−1
N (0,1)(CDFP oisson(Nbkg,b)(Nsig+bkg,b))) , (3.2)

where CDF is the cumulative density function of the respective distribution. In equation (3.2)
only overdensities are taken into account, i.e. Zb > 0 only for Nsig+bkg,b > Nbkg,b as we
are searching for a resonance.

For bins with Nsig+bkg/bkg,b ≫ 1 one can approximate the Poisson distribution with
a normal distribution N (Nsig+bkg/bkg,b,

√
Nsig+bkg/bkg,b). Equation (3.2) then reduces to a

much simpler form

MLS = max
b∈B

Zb = max
b∈B

Nsig+bkg,b − Nbkg,b√
Nbkg,b

. (3.3)

Although some test statistics, like χ2, have well-known distributions, other more unusual
test statistics, like the BumpHunter test statistic, require calibration. This is commonly done
by modelling its distribution using Monte Carlo simulation.
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Moreover, as systematic uncertainties arise from the definition of a signal region selection
and the background estimate, this calibration should be performed even in the case where
the distribution is known a priori. The calibration for the BumpHunter test statistic is
performed in ref. [126] by running pseudo-experiments in which the counts in each bin are
varied according to Poisson’s law. This can be extended to higher dimensions by resampling
the background events with bootstrapping. By calculating the test statistic for each of our
bootstrapped background-only pseudo-experiments, we obtain the distribution of the test
statistic in the background-only hypothesis. To ensure good modelling of the tail of the
test statistic distribution, which corresponds to large significance values in the presence of
signal, a large number of pseudo-experiments is required.

3.1.4 Significance evaluation

To obtain a calibrated p-value for a given value of the test statistic t, one counts the number
of background only pseudo-experiments exceeding this value N>t and divides it by the total
number of pseudo-experiments done, Ntot.

The (one-sided) significance is computed using the inverse cumulative density function
of the normal distribution Z = CDF−1

N (0,1)(1 − p-value).
In the case of N>t = 0 arising from the limited number of pseudo-experiments, we

instead set a lower bound:

p <
1

Ntot
, Z > CDF−1

N (0,1)

(
1 − 1

Ntot

)
. (3.4)

For every experiment with added signal events, we still bootstrap the background (for
consistency) and combine it with a given number of signal events chosen at random from
100,000 signal events (around 5% of events fall outside of the evaluation region). Due to
statistical fluctuations we also perform several pseudo-experiments in the signal enriched case
in order to obtain a robust estimate of the significance for each level of signal doping.

3.2 Cluster scanning

In this section we present a novel approach called Cluster Scanning, which follows the
same bump hunting scheme, but relies on a distinct set of assumptions than the commonly
employed methods and thus has several favorable characteristics. Our approach can be
divided into several key steps given below, with the hyperparameters chosen in order to
search for narrow resonances in the mjj spectrum of the LHCO R&D data. The motivation
for these hyperparameters in each step and the argumentation on how to choose them for
a different application case is given in appendix C.

Training region selection. We select a narrow mjj window [3000, 3100] GeV for training
of the k-means algorithm. This window contains 56,486 original background events. In this
publication, we focus on relatively small signal injections that include only 5% or less of the
total number of Z’ signals available. Therefore the training region is expected to contain 89
signal events or less, which can be regarded as negligible (proof given in appendix G). In
appendix G we show an improvement in performance in case the training region matches the
resonant peak and thus has a larger portion of signals events involved in clustering. However,
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Figure 2. The mjj distributions for the jets in each of the 50 clusters, each normalised to unity.
Here, 5,000 signal events have been injected into the evaluation dataset, which corresponds to 5% of
the total available signal events.

in an actual analysis the position of the peak will be unknown, thus we choose to discuss a
more representative case given here, when the training region happens to be in the tail of
the signal peak and thus has a negligible number of signal events.

K-means clustering. We apply a mini-batch k-means clustering algorithm with k = 50
implemented in the scikit-learn [127] library, with a batch size of 2048 on the set containing
jet images of the leading two jets from each event in this mjj window. The mini-batch
implementation is chosen due to its computational speed. The seeding of the cluster centroids
is performed using the k-means++ prescription described and motivated in ref. [128].

Cluster spectra. After performing the fit of k-centroids to the data in the training region,
we fix the centroid positions and evaluate how many jet images from each of the 16 mjj bins
of the evaluation region, defined in subsection 3.1.1 (it includes training region as one of
the bins), fall into each of the k clusters Ni,b where i ∈ {1 . . . k}, b ∈ {1 . . . nbins}. Figure 2
shows the resulting 50 normalised cluster spectra Ni,b/

∑
b(Ni,b) for one pseudo-experiment

with signal injection.

Per bin standardisation. We note that in each bin the normalised cluster spectra follow
an approximately normal distribution with several outliers from the anomalous clusters (see
discussion in appendix D). Therefore we standardise the normalised cluster spectra in each
bin using outlier robust estimators (described in appendix E) for mean and standard deviation
with an outlier factor of 0.2. Here we make the assumption that the majority of the signal is
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Figure 3. Spectra in figure 2 standardised over clusters in each bin. Potentially signal-rich cluster
spectra are shown in red.

located in a small number of clusters, and the rest of the clusters are signal depleted. Figure 3
shows the cluster spectra from figure 2 after normalising with the outlier robust estimator.

Selecting anomalous clusters. Utilising the assumption that the signal is localised in
mjj , we select potentially signal-rich cluster spectra as those with a deviation of more
than a threshold value of θ = 3 standard deviations from the robust mean in the positive
direction as we are only interested in a resonance leading to excess of events. The rest
of the clusters are labelled as signal-depleted. The threshold and the selected signal-rich
clusters are shown in figure 3 in red.

Signal-rich and signal-depleted regions. After the selection, we combine the non-
normalised distributions corresponding to our selected signal-rich clusters. This results in a
signal-rich spectrum Nsig+bkg,b with an example shown in red in figure 4.

The remaining cluster spectra are combined to form a signal-depleted spectrum Npoor,b.
The estimate of the background is then constructed by normalising it to the same total entries
as in signal-rich spectrum, namely Nbkg,b = Npoor,b

∑
b

Nsig+bkg,b∑
b

Npoor,b
. It is shown in blue in figure 4.

Test statistic. As previously discussed, to test the significance of an observed excess we use
the simple maximum local significance, as defined in equation (3.2). It may occur that no
cluster is selected as anomalous. In this case we assign a default value of 0, in order to show
good agreement with the null-hypothesis expectation. This is similar in motivation to setting
the value for an observed deficit in events to zero. Following the discussion in subsection 3.1 for
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Figure 4. Curves corresponding to the sum of signal-rich and signal-poor spectra in figure 3. The
blue signal-poor curve is rescaled to have the same total jet number as the signal-rich curve. The
coloured region around the blue curve is a σbkg,b =

√
Nbkg,b Poisson deviation after recaling used to

compute MLS.

the calibration process, we construct 3,900 pseudo-experiments using bootstrap resampling on
1 million background events. The distribution of the test statistic is discussed in appendix F.

Ensembling. Different initialisations lead to a broader distribution over the final test
statistic obtained with cluster scanning. In order to obtain a final value for the test statistic,
the cluster scanning method is performed 15 times with independent initialisations. The
mean of the test statistic from all the runs forms the final ensembled test statistic. The
distribution of this statistic is presented in appendix F.

3.3 Discussion

As we can see, CS follows the general bump hunt strategy, but introduces novel approaches
for the first two steps of this strategy. First of all, CS selects the most anomalous looking
clusters to define the signal-enriched region, and constructs a background estimate from the
rest of the clusters. Notably though, this selection is completely data-driven and does not
target a specific family of signal models. However, CS relies on a set of assumptions that
fundamentally differ from those commonly used in other anomaly detection approaches.

Search for overdensity instead of outliers. Most anomaly search methods like Autoen-
coders [38] and SVDDs [88] rely on outlier detection, namely, identifying the data instances
that lie in a region of very low probability density or outside the support of the “normal”
distribution. Notably, while all normal events share similar characteristics and exhibit easily
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recognisable trends, anomalous data, such as defects or fraud, can differ in numerous ways
and are thus given a wide prior. Although model-agnostic searches should accommodate a
wide range of possible anomaly models, it is usually assumed that a signal is produced by
only one or a few unknown BSM process. Thus, all anomalous events have many features
in common and exhibit some similarity to SM events, as any new particle must radiate and
decay into SM particles to be detectable.

Therefore we use the localisation of anomalies in both low-level (e.g. jet images) and high-
level variable (e.g. mjj) space as the first main assumption of the CS method. Localisation
of anomalies in low-level variable space means that only a few out of all clusters contain a
fraction of anomalies much higher than the rest of the clusters. This way clustering plays
a role of data-driven binning in low-level variable space. Localisation in mjj gives us a
possibility to distinguish these anomaly rich clusters from the rest, namely, by searching for
an overdensity in mjj in one cluster spectrum compared to all others. Thus, CS is able to
select a signal-rich region of events by leveraging the assumption of signal being localised
rather than consisting of outliers.

Although semi-supervised methods based on CWoLa (see refs. [105, 106, 129–133])
and density estimation methods are also sensitive to overdensities, they usually require
construction of a background template, which until recent developments [132, 133] was
preferably constructed for a smooth distribution of low dimensionality, typically using a
few high-level observables. In this publication, we show that CS is able to draw significant
improvement from a high-dimensional distribution of low-level jet observables. In this way, it
can be considered less signal-model dependent than the methods that rely on hand-crafted
high-level observables.

Assume cluster mass independence instead of smoothness. CS proposes a solution to
the second step of the analysis, namely, it estimates the form of the background by combining
the signal-depleted clusters. In this way, we do not rely on any assumptions on smoothness
or on a particular functional form of the background-only spectrum in mjj , which are heavily
relied upon by most other bump hunt methods, such as the global functional fit mentioned
in subsection 3.1, SWIFT [123] and even Gaussian processes [134].

Instead, the second main assumption of CS is that in the background-only case, the
assigned cluster centroid is approximately independent from mjj . Ideally, we would want the
distribution of background events over mjj in each cluster to be identical within statistical
uncertainty, such that the probability of a jet belonging to a cluster and having a specific
mass factorises, p(i, mjj) = p(i)p(mjj), or at least that the correlation is weak. This would
minimise the rate of incorrectly identified signal-enriched clusters. In practice, although
figure 2 shows that the distributions all follow a similar trend, there are still some systematic
deviations. These are a result of the finite width in mjj of the training window and slight
correlations between the distribution of the jet constituents and mjj arising from the transverse
momenta of the two non-resonant jets depending on mjj . Therefore, for the selection of
the clusters, we estimate the uncertainty separately for each experiment and for bin based
on the sample of our k cluster spectra values. This uncertainty estimate includes both,
statistical Poisson fluctuations and systematical uncertainty from mass dependence (see
discussion in appendix D).
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Unlike in methods with sliding window approach [106, 123], in CS the fit only needs to be
performed once.1 Moreover k-means clustering is a simple classical algorithm that typically
requires less training than deep learning approaches, making CS a relatively fast analysis
method. This is important in the context of the ensembling and calibration, which both
require a large number of analysis iterations, and are thus a notable obstacle to incorporating
deep learning in HEP analysis under the constraint in computing resources. Fast analysis is
also advantageous for testing its efficiency for simulated BSM events in order to produce the
exclusion limits (see the RECAST [135] framework). Moreover, CS avoids other disadvantages
inherent to sliding window approaches, such as limited search range due to the definition of
the sidebands and the need to optimise sideband and signal window widths.

3.4 Idealised CS

Despite choosing a narrow mjj window to reduce mass dependence systematics, the variables
that we use for clustering are in general not independent of mjj . Thus, we observe the
background-only spectra of some clusters do not just statistically fluctuate around the
expected shape of the background, but exhibit some degree of smooth mass sculpting. This
affects the performance of the method by introducing false positives at the cluster selection
stage. We expect that this may be partially remedied by a more sophisticated method of
selecting anomalous clusters or a better background estimate, both of which would rely on
further assumptions. These studies are outside the scope of this publication. However, to give
an upper bound on the performance one may achieve with such improvements we propose
an idealised version of clusters scanning.

Idealised CS version requires us to modify the distribution of the jets between the
clusters. First, we count the numbers of jets that fall into each cluster in the first mjj bin.
If no mass dependence were present, the fractions of QCD jets in each cluster xQCD,i,b =
NQCD,i,b/

∑
i NQCD,i,b should be independent of bin number b within statistical uncertainties.

To simulate this case in all the consecutive bins except the first we distribute the QCD jets
in these bins among clusters using a multinomial distribution with weights equal to the
fractions obtained in the first bin xQCD,i,b = xQCD,i,1, thus generating cluster spectra that
follow the original background spectrum with statistical fluctuations, i.e. the case with no
mass dependence. The signal jets are distributed as before according to which cluster they
belong to, such that the fractions of Z ′ jets may differ between different bins. This is done
because we assume that only the background is distributed roughly proportionally between
clusters, which is equivalent to assumption 2, but not the signal.

This distribution of jets creates idealised cluster spectra for each clustering, and the
rest of the algorithm remains unchanged.

4 Results

As a proof of concept we perform an analysis applying CS and global fit based bump-hunting
with the above mentioned hyperparameters to the LHCO R&D dataset with different amounts

1Training and evaluating CS using a sliding window approach was considered; however, the resulting spectra
exhibited abrupt discontinuities due to relatively low statistics in the high mjj bins, making them unsuitable
for further analysis.
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of signal injection, given in figures either as an absolute number of injected events ϵ or as
a signal to background ratio S/B of events in the considered [3000, 4600] Gev mjj region.
For each pseudo-experiment with signal injection we calculate the significance Z as discussed
in subsection 3.1.4 using the calibration test statistic distribution. For each signal injection
level we run 100 pseudo-experiments with bootstrapped background data and randomly
sampled signal events. As a reference for the significance and its statistical variation for each
contamination level, we report the median significance of these pseudo-experiments and 0.25
and 0.75 quantiles. We define the ratio between the median significance provided by CS to
the significance of a baseline method as the significance improvement (SI). We also quote the
relation between the number of events needed to obtain a 3σ evidence in each analysis strategy.

Figure 5(a) shows how the global significance of CS and the parametric fit-based methods
depends on the signal contamination in the pseudo-experiment. It characterises the perfor-
mance of these realistic analysis strategies, which do not use any truth information for the
evaluation of the test statistic, thus including all the systematical uncertainties coming from
partially fulfilled assumptions needed for the respective method.

We observe that although 3- and 4-parameter fits give approximately the same results,
CS outperforms them by a significant margin in the region from 1500 to 4000 signal events.
Beyond 3000 signal events, the significance yield from CS is limited by the number of bootstrap
pseudo-experiments in the calibration set, but the lower bound on its significance still remains
substantially higher than the significance of the parametric fits. This is the most interesting
region as there the transition between non-significant signal (below 1σ) and new physics
evidence (above 3σ) takes place. Looking at the lower subplot in figure 5(a) we see that CS
gives us an SI of 2 and higher on the majority of regions of interest. We can also see that
CS produces a 3σ evidence for only 61% of the events needed to obtain this evidence with
the parametric fit. This shows that although both suffer from fit and assumption induced
systematic uncertainties, CS has a clear advantage over parametric fitting procedures.

Above we have also described the idealised version of the cluster scanning method and in
appendix A the analysis with an idealised background fit. Both methods rely on event labels
to remove systematic uncertainties introduced by the limitations of the assumptions of our
methods and to make the background estimate in both cases close to the true background,
with only statistical fluctuation taken in consideration. This is done to separate the influence
of additional information, namely the low-level observables used in the analysis, from the
systematic uncertainties introduced by the fits, and to construct the upper bound on the
performance of our methods.

Figure 5(b) shows how the global significance of both idealised methods depend on the
signal contamination in the pseudo-experiment. It can be seen that one needs substantially
less signal for it to be significant in the idealised methods compared to the realistic methods,
as it removes false-positives induced by systematic uncertainties in the fits. Still, we see
that the idealised CS outperforms the idealised functional fit on the majority of the interval
between 1000 and 2200 signal events. Looking at the lower subplot in figure 5(b) we see
that by using CS in the region of interest we gain a significance improvement factor of
up to 1.5. We can also see that CS produces a 3σ evidence with only 69% of the events
needed to gain this evidence with the idealised fit. This shows that in the case of negligible
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Figure 5. Upper figure: Median and the quartile bounds of global significance of the signal
contaminated pseudo-experiments as a function of the number of signal events ϵ injected shown for
the (a) realistic and (b) idealised analysis methods. The dotted lines mark lower bounds, as there was
not enough statistics to access higher significance levels. Bottom figure: Significance improvement
of the CS method compared to the 4-parameter fit for the (a) and the significance improvement of
idealised CS compared to idealised fit for the (b) as a function of the signal-to-background ratio S/B.

systematic uncertainties, CS gives an improvement over any smooth fit as, in addition to just
using information from mjj , it also makes use of the low-level event information. From the
difference between idealised and non-idealised CS we can see that there is some room for
improvement of CS to reduce the false positive rate, and improve the analysis efficiency.

5 Conclusions and outlook

This paper is a first proof of concept for the cluster scanning anomaly search method, which
is designed to search for resonant overdensities on the distribution of an observable using
clustering techniques in auxiliary observables.

We found that it outperforms the widely used bump-hunting method, which relies on
the functional background fits, in several metrics relevant to an analysis. In the transition
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region, where the benchmark algorithm achieves 1σ to 3σ significance, CS improves the
result by a factor of 2 or more for the realistic case, or by a factor of 1.5 for the idealised
comparison. This reduces the number of signal events required to produce a 3σ significance
by a factor of 0.61 in the realistic case and by a factor of 0.69 in the idealised case. The
former factor of improvement should be expected in a real application. We also discuss the
comparison of cluster scanning with other anomaly detection algorithms in subsection 3.3,
outlining its advantages and limitations.

The CS method should not be seen as a direct competitor to background fitting methods,
but rather as a complementary approach that relies on a different set of assumptions about
the nature of the anomaly and the background distributions, which are not well known.

There remains a large unexplored field of potential extensions and improvements to this
method or synergies with other methods. Straightforward follow-up studies can explore the
use of clustering methods other than k-means. One can look for other ways of selecting the
anomalous clusters, alternatives to the one proposed in subsection 3.2, that would rely on
different assumptions. For example, one can require that all anomalous clusters are neighbors
in the space of clustered inputs. One can also unify the assumptions of CS and functional
fits to produce separate background estimates for each of the clusters separately, greatly
reducing the mjj dependent systematic uncertainties.

CS could benefit from using features developed by other algorithms that have already
been optimised for other tasks, such as flavour tagging, or even using unsupervised learning
for feature extraction.

Furthermore, since many other ML approaches to improve sensitivity in model-
independent searches rely on a bump hunt for the final statistical analysis, CS could also be
used to further enhance sensitivity. This could be of particular interest when the background
distribution is no longer well described by simple, smoothly decreasing functional forms.
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A Idealised fit and n-parameter fit pseudo-analysis

In general, if a distribution Hb of a background events is perfectly known a-priory, given
a binning for this distribution, one can calculate the expected number of events in each
bin. Being provided directly from the true underlying Hb, this background estimate will
on average provide the most efficient tests to discriminate samples drawn from Hb from

– 14 –

https://github.com/IvanOleksiyuk/jet_cluster_scanning


J
H
E
P
0
6
(
2
0
2
4
)
1
6
3

samples drawn from an alternative hypothesis Hb+s with signal, compared to any other
estimate of the expected background for these samples. Hence we call the expectation from
Hb an “idealised fit”.

As discussed extensively in section 3.1, estimation of the expected background is only
one step of the analysis. To create a benchmark, we do pseudo-analysis on LHCO R&D
dataset represented by spectrum Nbkg,orig,b using the other choices defined in section 3.1.
Namely, we generate pseudo-experiments by bootstrap resampling the events from Nbkg,orig,b

and add a number of signal events if needed. The “idealised” background estimation for
every pseudo-experiment is equal to Nbkg,orig,b itself (as the samples were generated with
these expected values). Following the discussion in subsection 3.1.3 we use MLS test statistic
between this estimate and the generated pseudo-experiments, to generate null-hypothesis
test statistic distribution and its value for signal contaminations and thereafter estimate
the significance. Depending on the number of doped signal events, the median and quartile
region significance given by this test is provided in the main text in figure 5(b).

Unfortunately the background model is usually unknown, so for each experimental sample
the background should be estimated in some less precise way relying on weaker assumptions.

As a realistic benchmark to our method we explore how sensitive the analysis is using
global n-parameter functional to the kind of signal presented in LHCO R&D dataset. We use
the binning with 16 bins defined in subsection 3.1.2 and count the number of background
events in each bin to get an original background spectrum Nbkg,orig,b.

For all the fits in this studies, we use Trust Region Reflective nonlinear least squares
fitting algorithm implementation from Scipy python package [136]. The chosen bins generally
contain more than 5000 counts, so the Poisson distributions of these counts can be well
approximated by a Gaussian distributions with the variances equal to the bin counts. Using
variances to scale the summands in the least squares objective we make it equivalent to the
maximum likelihood objective for this setup.

First, we fit our 3- and 4-parameter functions to the spectrum to see if the fit is valid.
Resulting fits with 13 and 12 degrees of freedom score χ2

3−par

ndof
≈ 1.201 and χ2

4−par

ndof
≈ 1.338

that correspond to p-values of 0.275 and 0.182 which signify validity of these fits.
Unlike the CS method that doesn’t generally rely on the smoothness of the background,

global n-parameter takes it as the main assumption, so as Nbkg,orig,b already has some
statistical fluctuations a distribution resampled from it will have even larger statistical
fluctuations than the ones expected for Poisson distribution. To simulate the proper scale
Poisson fluctuations in the chosen region for our pseudo-experiments we resample events
not from Nbkg,orig,b but from the best possible fit. This also negates the systematic error
from null-hypothesis not corresponding to the empirical functional form, so these exper-
iments can be viewed as semi-idealised. In a more realistic cases, the space of functions
given by all possible parameter values, does not contain the true form of null-hypothesis
distribution and can only yield an approximation of it with limited precision. It is usual
for fit functions with a small number of parameters, but with increasing number of pa-
rameters the function fit problem becomes over-defined and the function can fit the signal
bump as well. Experimentally we have observed only insignificant increase in performance
when comparing sampling from Nbkg,orig,b or from the best fit distributions. On top of
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the resampled background events we add a number of signal events from signal’s original
distribution when needed.

The initial parameters of the fit in each experiment are chosen to be equal to the optimal
parameters of the initial fit discussed above, so that one gets an “idealised” background fit if
no optimisation is done. However, because of the statistical fluctuations and/or added signal
contamination, the maximisation of likelihood results in a different set of parameters for
this functional form. This error of background mismodeling under its statistical fluctuations
and addition of the signal is exactly the type of error we want to demonstrate with this
pseudo-analysis.

The results of such analysis for different signal contamination is given in figure 5(a). We
can see that the 3-parameter fit provides a slightly better result than 4-parameter fit as the
latter has more flexibility to overfit the signal and the statistical fluctuations. This is so
because the samples are drawn from 3- and 4-parameter functions with fixed parameters
themselves. If we were to sample from other distribution the error coming from mismatch
in true end expected functional forms may switch this ordering but it will reduce both
performances. Therefore, the curves shown in figure 5(a) are upper limits of these realistic
n-parameter fit analyses achievable only when the true distribution is described by one of
the functions in the chosen parameterised space.

B Sparsity of the jet images

Figure 6 show that the jet images are very sparsely populated ususally having less tha 100
non-zero pixels per 1600 pixels total.

C Hyperparameter selection and motivation

In this appendix we give motivation for every not yet discussed choice of hyperparameter in
our pseudo-analysis. All the hyperparameter suggestions are done in an unsupervised way
coming from general assumptions about signal and background and are not optimised using
the truth information from LHCO R&D data. As such the levels of significance improvements
may be further increased by performing a dedicated parameter scan for a specific application,
however, we recommend to follow the same reasoning when applying CS in other analyses.

Training region. Training on the full spectrum would likely result in each cluster corre-
sponding to a specific mass region, thus the background spectrum for each cluster would not
be close to the original mass spectrum. Therefore we perform clustering in a narrow mass
window [3000, 3100] GeV. We choose this window as it lies in the studied region defined in
subsection 3.1.1 and has the largest statistic of all other 100 GeV windows.

Number of clusters. The most important parameter we had to choose is the number of
clusters k. Two factors play the key role in this choice. On one hand, the number of clusters
has to be as large as possible to better narrow down the anomaly-rich region. On the other
hand, for a given number of events in the evaluation region and the binning of this region
one has to take the number of clusters sufficiently small so that the least populated clusters
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Figure 6. Distribution of images in QCD and top datasets from top-tagging task vs the number of
non-0 pixels in them.

in the smallest mjj bin min
i,mjj

(Ni(mjj)) still has enough statistics for a meaningful statistical

analysis. We assume that min
k,mjj

(Ni(mjj)) = O(50) should be sufficient. Using a coarse search,

we determine, that for our choice of binning and overall statistic at hand choosing k = 50
gives a good trade-off as it has a median of 55 events in smallest cluster-bin and it goes below
20 only 1 time in 1000 pseudo-experiment runs, as can be seen in figure 7.

Batch size. Scikit-learn [127] documentation states that the parallelisation is performed on
all available Ncores computing cores if the batch size is Ncores · 256 or larger. We performed
all computations with 8 core parallelisation, thus the natural choice of a batch size was 2048.
It is also important to maintain the batch size much larger than the number of clusters
to ensure faster convergence.

Outlier fraction. To quantify the performance of our method we introduce the signal
fraction improvement score (SFI) that characterises a subset S of the events in evaluation
set E by the relative increase in the signal to background ratio

SFI(S) = Nsig(S)
NQCD(S)

NQCD(E)
Nsig(E) . (C.1)

Our main assumption is that the signal is distributed in clusters unevenly and there only
several clusters have a significantly large SFI. To put it in numbers, we assume that not more
than 20% of clusters have SFI of 2 or more. Following this assumption we choose the outlier
fraction of 0.2 for outlier robust estimators. This is an ad. hoc prior assumption about the
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Figure 7. Distribution of the number of jet image counts in the least populated bin of the least
populated cluster in each of the 1000 random background only runs of the CS algorithm on backround
only data.

data at hand, and it has to be made prior to analysis and has no way to be validated without
knowing the truth lables. Still we can show that this assumption is satisfied in our case with
a margin for the pseudo-experiment shown on all the figures of section 3. 5000 signal events
were giving an overdensity on the original spectrum that was not identifiable as a deviation
from smooth background by human eye (without knowing the background truth), but in
figure 2 one can easily notice two spectra with a significant bump around 3.5 TeV that stand
out of the crowd of other spectra. Unsurprisingly these two spectra have SFIs of 9.1 and 8.9.
Three more clusters also have a visible overdensity at this position possessing SFIs of 6.3, 5.6,
4.4. In total, exactly 8 clusters have SFI > 2. Still as we will see later only 3 of these clusters
have a signal significant enough to be selected as anomalous, showing that our assumption is
quite conservative in its limit and either the threshold SFI can be increased or the percentage
of clusters to path the threshold reduced for it to still remain a valid assumption. Runs of
the analysis on other (pseudo-)experiments behave in the similar manner.

Cluster selection threshold θ. First of all, we use the threshold only for positive
deviations as we only search for excesses of events. Apart from the signal-rich outlier clusters
the threshold can be passed by signal poor clusters, but only with an expected false positive
rate of 1 − (1 − p-valueN (0,1)(θ))nbins . Then for large enough thresholds the average number
of false positives can be estimated as k · nbins · p-valueN (0,1). Higher thresholds result in
lower false positive and lower true positive rates. To retain the sensitivity for statistically
small signal we choose to use θ = 3 that will result in approximately 50 · 16 · 0.00135 = 1.08
signal poor cluster being assigned a false positive label on average. Figure 3 shows 4 clusters
being chosen using this threshold. Three of them have an overdensity at 3.5 TeV and one
does not, implying that it is a likely false posive.
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Parameter value motivation
k 50 min

i,b
(Ni,b) = O(50) with binning below

mini-batch 2048 Ncores · 256, must be ≫ k

Training region [3, 3.1] TeV narrow mass window with high statistic
Evaluation region [3, 4.6] TeV the n-parameter fit is applicable

excluding low statistic regions
Bin width 100 Gev broad enough to have sufficient statistics in each bin

outlier 0.2 consistent with assumption
fraction f on the maximum number of signal clusters

Cluster selection 3 σ low enough to let trough many true positives
threshold θ but high enough to filter most false positives

Test statistic MLS simple and specialised for local excesses
Default TS 0 minimal test statistic possible

Ensemble size 15 As large as possible realistic compute limitations

Table 1. Summary of the hyperparameters used in cluster scanning.

Ensemble size. We recommend to take the ensemble size as high as possible, for given
computation resource constrains to reduce the width of the test statistic distribution (see
appendix F).

D Distribution of cluster scanning bin entries

The assumption on the Gaussianity of cluster spectra in each bin can be shown to be valid
by robustly standardizing the cluster counts in each bin (see appendix E) and checking if
these distributions match N (0, 1). The upper part of figure 8 visually demonstrates that the
distribution of cluster spectra in each bin in figure 3 matches the Gaussian model, except
in bins 3.4 TeV < mjj < 3.5 TeV and 3.5 TeV < mjj < 3.6 TeV, where many outlier clusters
are found due to the presence of signal. Fifty samples are usually not sufficient to determine
whether the distribution is Gaussian or not, but by marginalizing (summing up) over 16 bins,
we obtain 800 samples in total. The lower plot in figure 8 shows the said distribution. If we
consider only signal-poor clusters, the distribution fits the N (0, 1) distribution well visually
and according to a consensus of three normality tests: Shapiro-Wilk, Kolmogorov-Smirnov,
and Jarque-Bera (note that the p-values for all the tests are high). Including signal-rich
clusters adds outliers, which is reflected in lower p-values for the normality tests; however,
apart from these, it still can be well approximated by a unit Gaussian.

The variance among clusters in each bin depends on both statistical fluctuations and
mass-dependent systematic effects. In the case of infinite statistics, all cluster spectra would
appear smooth but would vary from one another due to differences in mass sculpting. In the
absence of mass dependence, the variation in each bin would be caused solely by Poisson
fluctuations (as mentioned in subsection 3.4, dedicated to idealised CS). In a realistic scenario,
these two factors cannot be separated but can be jointly estimated using a robust standard
deviation for each bin (see appendix E).
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histograms at the top compared to expected bin counts of a Gaussian with a sum of 736 count (all
the signal poor counts).
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Figure 9. Normalised spectra with subtracted normalised original mjj spectrum. Amount of signal
is 5000. The selection of the anomalous clusters is taken from figure 4.

E Outlier robust estimators

While searching for outliers, it is preferred to use outlier robust estimators for standard
deviation (SD) and mean. We define them as follows: given a sample of observations S =
{x1, x2, . . . xn} we find a median med(S) (which is itself an outlier robust estimator) of this
sample and take a subsample S̃f that is constructed from S by discarding a fraction 0 < f < 1
of all samples that have largest absolute distance to this median. In this way we have discarded
the outliers. After that we construct estimators µ̃f = mean(S̃f ) and σ̃f = SD(S̃f ) · g(f).
If S is a sample from N (µ, σ) it is obvious that with lim

n→∞
µ̃f = lim

n→∞
mean(S) = µ. If one

takes S from N (0, 1) and rescales xi → σxi, then both estimators transform as σ̃f → σσ̃f

and SD(S) → σSD(S) by definition, so both estimators σ̃f and SD(S) are proportional
to a true σ of the Gaussian distribution.

Both σ̃f and SD(S) are independent of µ and there are no other parameters of the normal
distribution for estimators to depend on, therefore for a family of Gaussian distribution
estimators σ̃f and SD(S) are proportional to each other by some constant factor g(f) in the
limit of infinite sample. In other words, adjusting numerically g(f) = SD(N (0,1))

σ̃f (N (0,1)) = 1
σ̃f (N (0,1))

is sufficient to sattisfy lim
n→∞

σ̃f = lim
n→∞

SD(S) = σ. So µ̃f and σ̃f are unbiased estimators
of µ and σ of a normal distribution, although depending on f they are less efficient than
usual non-robust mean and SD.

Figure 9 shows us the cluster spectra from figure 2 with subtracted normalised original
spectrum (which is only needed for better visualisation as this step has no effect on the
standardisation).
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Figure 9 also shows the conventional and the outlier robust estimations of mean and SD
of the cluster spectra values in each bin. As expected for lower mjj the SD is higher as these
deviations is partially caused by the Poisson fluctuations which are proportional to

√
Ni,b.

We can also see the conventional estimators have a bump around 3.5 TeV that is induced by
our outlier signal-rich clusters, while the robust estimators are unaffected by the outliers.

F Calibration distributions

The distribution of the test statistics given by CS without ensembling for all background only
pseudo-experiments is shown in figure 10(a) as a histogram. We see that around 300 of those
were assigned test statistic of 0 as they had no clusters selected as anomalous. Other cases
where one or more anomalous clusters were selected form a smooth continuous distribution.

The median CS test statistic for 100 signal contaminated pseudo-experiments is repre-
sented in figure 10(a) by a vertical line, and the vertical band represent the region between
the quartiles of such a test statistic sample. For each signal-doped pseudo-experiment we
calculate significance as it is described in subsection 3.1.4. The median significance is quoted
in the legend of the figure.

Figure 10(b) shows the distribution that is analogous to the one in figure 10(a), but with
an ensemble of 15 runs of CS algorithm for each pseudo-experiment. We notice that the
distribution in figure 10(b) is significantly narrower than in 10(a) which reduces the frequency
of background only experiment having large test statistic, thus increasing the sensitivity to
signal injection. An additional benefit is that the uncertainty region (between two quarterlies)
for each signal doping have significantly decreased which is important for lower uncertainty
in the analysis on experimental data on the excess significance or on the exclusion limits.

This motivates, that in general the ensemble size should be taken as large as reasonably
possible. Our choice of ensemble size 15 together with the number of pseudo-experiments
3900 were dictated by the computing time and storage memory limits as the amount of full
CS algorithm iterations is the product of those numbers (excluding the pseudo-experiments
with signal injection)

Finally, figure 10(c) shows that for idealised CS without systematics introduced by
mass correlations the MLS between our signal spectrum and background estimate is lower.
Moreover, as expected, it improved the sensitivity of the method to the signal. Obviously
this technique cannot be utilised in an actual analysis as jet labels are needed to distribute
signal and background jets in a different manner.

G Impact of signal in the training region

First of all, we retrain all the signal-contaminated experiments such that we do not include the
O(100) or fewer signal events while performing k-means fit. We still include the correct number
of signal events when evaluating. The performance of this version of CS is demonstrated
with the curve labeled as “ignore signal” in figure 11. It is evident that the two versions
have a statistically insignificant difference. We conclude that indeed the original CS version
well describes a general and realistic case of having negligible to no signal contamination
in the training region.
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(a)

(b)

(c)

Figure 10. Histogram of the CS test statistic for pseudo-experiments with bootstrapped background
only samples. Vertical lines and vertical bands show median and region between lower and higher
quartiles of test statistics for pseudo-experiments with signal injection. Several signal injection levels
are represented by different colours. Panel (a) shows a case with only 1 initialisation of clusters
in CS per pseudo-experiment, panel (b) shows a case for ensembling 15 runs of CS with different
intialisations per pseudo-experiment and panel (c) shows a case for ensembling 15 runs of idealised CS
with different initialisations per pseudo-experiment.
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Figure 11. Analogous to figure 5(a), with two curves added for the experiments of training without
signal and for training in the most signal-rich region of [3450, 3550] GeV.

For the next experiment, we train clustering in the region with the highest signal event
fraction, namely [3450, 3550] GeV. We run background-only and signal-contaminated pseudo-
experiments in this region with all other hyperparameters equal to the values used in main
studies. In the case of a non-negligible signal fraction in the training region, the cluster
centroids will be attracted to the regions of signal event concentration. We observe this
effect, as the resulting signal clusters have a much higher signal fraction as the signal events
“pull” the corresponding cluster centers closer, leading to a large increase in the performance
of the CS method that is visible in figure 11. Although in the general case the position of
the signal-rich region is unknown, these studies prove that figure 5(a) and figure 5(b) only
show the lower bound for the discovery potential of CS.
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