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Abstract—Copy Detection Pattern (CDP) technology is a
promising anti-counterfeiting solution for the protection of phys-
ical goods. In recent years, it has been shown that this technology
is threatened by powerful deep learning attacks that are able
to bypass original authentication schemes. In this paper, we
tackle this problem by proposing a new CDP authentication
scheme based on statistical knowledge discovered about the
printing and imaging process. The novelty of our approach lies in
providing means to measure the reliability of each local pattern
appearing in the CDP. This allows to define new authentication
measures to better differentiate original CDP from fakes. Our
results show that this new system is capable of performing
reliable CDP authentication with smartphones without the need
for heavyweight machine learning tools requiring massive data
entries.

Index Terms—copy detection patterns, smartphone authenti-
cation, binary pattern-based channel, deep learning fakes.

I. INTRODUCTION

Nowadays, counterfeiting and piracy are among the main
challenges for modern economy. Existing methods of anti-
counterfeiting are very diverse, ranging from watermarking
techniques, special ink, holograms, electronic IDs, etc. The
drawbacks of these technologies are that they can be expen-
sive, often proprietary, and usually, authentication is performed
in a non-digital way.

A newly promising emerged field in digital anti-
counterfeiting technologies is the usage of Printing Unclonable
Features (PUF) which are based on intrinsic forensic unclone-
able features of physical objects, such as randomness of ink
blots or paper micro-structures [1]–[3]. Another technology is
Copy Detection Patterns (CDP) [4] which are random binary
patterns of high entropy printed at the highest possible resolu-
tion that are thus difficult to clone. The CDP, in comparison to
other technologies, represent an attractive trade-off as they are
easily implemented in a production pipeline as a sub-structure
of QR-codes and allow for digital authentication [5]. They can
be easily integrated into a tracking and tracing distribution
framework. The main challenge of this technology today is
that, although designed to be robust to common copy attacks
when simple decision rules are used based on the similarity
to a reference digital template, the CDP face significant
difficulties with the advanced machine-learning (ML) copy
attacks [6]. The authors in [7] demonstrated a possibility to
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Fig. 1: Authentication of a CDP performed by smartphone.
The CDP is embedded as a sub-structure of a QR code as
described in [5]. The proposed approach offers the possibility
to select only reliable patterns (in blue) to perform the compar-
ison with a reference digital template stored on a remote server.
A decision is then made based on the measured patterns.

use powerful deep classifiers in two-class classification set up
and showed that it allows one to reliably distinguish original
CDP from fakes, if the fakes used at testing time match the
statistics of those used during training. However, in the case of
mismatches, the method fails to distinguish originals and fakes.
In practice, the situation is further complicated by several
factors:

• the high deviations in printing and imaging leading to
large intra-class variabilities;

• ML estimation attacks that are able to produce digital
template estimations based on their printed counterpart
with an accuracy score as high as 94% [6];

• the natural lack of exact prior knowledge for the authen-
ticator about the fakes in field. Fakes can be produced in
multiple ways and it is unknown which fake will be used
at the attacking time;

• the absence of a reliable model of printing-imaging chan-
nel that complicates the design of optimal authentication
rules.

These problems might be partially addressed by changing
from a digital template reference to a physical registered
template. Although this technique has proven to be satisfactory
for the detection of forged copies, it is unrealistic in practice
as it requires a prior enrollment of every printed CDP sent to
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the public domain and so it is not scalable and costly.
In [8], the authors proposed a generative deep-learning

model producing synthetic physical references, mimicking the
behaviour of real physical references. The results they obtain
are very promising in terms of ML fake detection but this
model requires heavy computations to be implemented in
practice, lacks interpretability and thus gives no control on the
stability of the fake detection. In [9], the authors perform an
in-depth study of such generative models, trained in paired or
unpaired setups and compare the outcomes with real acquired
CDP. However, the interpretability of the results produced
and execution on mobile devices remain open issues for this
approach.

In view of these shortcomings, we present in this paper an
authentication scheme relying on a theoretical binary pattern-
based channel model. This paper is a further extension of our
conference paper [10]. In addition to our previous work where
we addressed the following problems:

• proposed a new method of authentication based on digital
templates able to perform authentication under complete
ignorance about the actual fakes;

• introduced a new measure of similarity for printed CDP
which outperforms the standard metrics used before;

• introduced a measure of reliability for printed patterns,
giving the defender the ability to select only the parts of
the CDP which are reliable for authentication (see Fig. 1
for an illustration);

• performed reliable authentication based on high-
resolution scanner in the face of very strong ML attacks;

in this work we extend our study to:

• address a challenging problem of reliable authentication
of CDP based on smartphone devices against ML attacks.
The authentication of CDP against ML attacks on mobile
devices is a considerably more complex task in compar-
ison to those based on high-resolution scanners;

• reformulate the mathematical model in terms of channel
reliability, explicitly linking it to the stationary binary
symmetric channels from information theory [11], [12]
and previous related works addressing bit reliability in
identification and retrieval applications [13], [14];

• perform new experiments that give better understanding
of the link between the concept of pattern reliability and
authentication performance enhancement;

• consider several additional measures of authentication
system performance.

The paper is organized as follows: Sections II and III
introduce the classical framework of CDP-based authentication
schemes and present the pattern-based channel model and its
properties that form the theoretical foundations on which the
new framework is built. Section IV describes three algorithms
that form the new authentication scheme. Section V and VI
describe the experiments that were performed on a real dataset
of CDP enrolled with smartphones and discuss the results
obtained. The final section VII concludes the paper and con-
siders possible extensions and perspectives. All mathematical
notations used in the paper can be found in Table I.

Public
Domain

Defender
Codebook

Verifier

T

F
Attacker

Fig. 2: Illustration of the CDP framework seen as a 3-
player game. The Defender (in green) generates and prints
template tn on the surface of an object on and sends it
to the public domain. The Attacker (in red) can use on to
create a counterfeited version cn of it. Finally, the Verifier
(in blue) scans the object and authentifies the probe yn to
decide whether it is an original or a counterfeit. The novelty
of our model consists in adding a codebook (in yellow) which
is trained by the Defender and used by the Verifier to enhance
the authentication accuracy.

II. CLASSICAL CDP FRAMEWORK

A. The printing-authentication scheme

The anti-counterfeit technology based on CDP can be
described as a 3-player game with a Defender, an Attacker
and a Verifier as shown in Fig. 2.

The Defender protects his brand by using a family of digital
CDP templates {tn}Nn=1 stored in the form of a binary matrix
tn, which is then printed on the surface of an object on and
sent to the public domain. The Attacker has access to the
printed version of the CDP and may use it to create a counter-
feit cn, through the process of scanning, post-processing and
reprinting (see [6], [15]–[17] for investigations of attacking
techniques). At the authentication stage, the Verifier receives
an unknown package (either on or cn) from which a digital
image yn is acquired, using a mobile phone. We denote xn

the code acquired from on and fn the code acquired from cn.
An authentication is then performed based on the probe yn,
which might be either xn or fn, with respect to the reference
digital template tn.

The information about the reference digital template tn,
which should be used for the authentication by the Verifier,
can be obtained in various ways. For instance, the surrounding
QR-code shown in Fig. 1 may contain a pointer to the secured
dataset and then, via a secured channel, the corresponding
template is communicated to the Verifier who checks its
authenticity in a secured environment. Otherwise, the probe
can be sent to the secured and trusted server via the acquisition
application and the authentication performed on the server.
(see the blue and yellow arrows between the Verifier and the
Defender in Fig. 2)
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Fig. 3: A visual representation of the printing-imaging-
estimating process. Notice how the dot-gain effect creates
dependencies on neighbouring symbols.

B. Authentication techniques

The algorithms used for authentication evolved a lot in the
last few years. At first, CDP were designed with an idea to
be resistant to simple scanning and reprinting attacks [4]. Due
to the dot gain effect of printers, a portion of the information
stored in the template t is lost in the probe y through the
random process of printing and imaging. Various ways to
measure the information loss have been proposed which can
be formalized with different types of metrics:

1) ℓ1- or ℓ2-distance between the probe y and the template t;
2) Pearson correlation between t and y;
3) Hamming distance between the template t and an esti-

mation t̃ of the template, based on the probe y.1 [18].
These scores are then compared with a decision threshold γ

to decide whether the probe y is genuine or fake. Nowadays,
new techniques emerge with the use of machine learning,
allowing one to train deep classifiers [7], [19] and deep
binarization techniques [6], [15]–[17]. Although showing very
promising results, these new algorithms act as black boxes and
thus lack interpretability, which is paramount when working
on reliability questions and security-critical applications such
as the protection of pharmaceutical products.

III. PROPOSED MODEL

A. Markov chain and communication channels

The proposed mathematical model describes the process of
printing and imaging as a Markov Chain T → X → T̃, where:

• T is a random binary matrix of size L×L sampled from
i.i.d. Bernoulli distribution: Tij ∼ Bern(p), p ∈ [0, 1] is
the probability of white symbol;

• X is a random matrix of size kL× kL, Xij ∈ [0, 1] for
some magnification factor2 k = 1, 2, 3, ...;

• T̃ is a random binary matrix of size L× L.
The core idea of the model relies on information theory,

where each symbol is interpreted as a communication channel
Tij 7→ T̃ij . Thus a very natural question arises about how
reliable each channel is, which we measure in terms of
posterior probability of bit-flip:

1In real situations, the size and orientation of the probe y and the digital
template t might be different due to the complex printing and imaging
processes. To proceed with the estimation of t̃ from y, the image y is first
geometrically aligned with t using common template matching techniques. In
our case, we have used the synchronization markers around the printed codes
to align y and t. After the geometrical alignment, the binarization based on
Otsu’s algorithm is applied to the aligned image. As a result, the image y is
transformed to a binary counterpart t̃ aligned in size and orientation to t.

2The magnification factor is related to the resolution of enrollment equip-
ment. Nowadays, with modern scanners and mobile phones, k ≥ 1.

TABLE I: Mathematical notations used in the paper.

Mathematical notation Meaning

t binary digital template
x digital original printed from t

CDP f digital fake version of t
y probe representing either x or f
t̃ digital template estimated from y

T binary random matrix for t
X random matrix for x
T̃ binary random matrix for t̃

BPC p ∈ [0, 1] probability of white symbol in T

ω ∈ Ω set of all patterns
Pb(ω) probability of bit-flipping at ω

C codebook of probabilities
P probability measure for (T,X, T̃)

n = 1, ..., N index within the dataset
(i, j) or (r, s) coordinates of pixels in t

L× L size of t
Numbers h = 1, 3, 5, ... integer defining the size of ω

k = 1, 2, 3, ... magnification factor from t to x

µ ∈ [0, 1] threshold used for reliable patterns
γ ∈ R decision threshold for measures

Pb(T) = P(Tij ̸= T̃ij |T) ∀i, j. (1)

The underlying real process this model is trying to describe
is the following: when a digital template t is being printed
and acquired as an image x, some distortions occur in x
due to the dot-gain effect, printing-related natural randomness
and acquisition conditions. Thus, when one tries to estimate
t̃ from x, it will end up with some errors, dependant on
the printer, type of paper, acquisition device, conditions and
chosen estimator. Fig. 3 illustrates this process.

A first model describing this phenomenon was studied in
[12]. In this article, the authors model the probability of bit-
flip as a Binary Symmetric Channel (BSC):

P̄b = P(T̃ij ̸= Tij) ∀i, j. (2)

This model assumes that all symbols Tij of T have the
same average probability of bit-flip P̄b. Although being very
common in information theory, this model is too restrictive to
be able to capture the random dependencies of the printing-
imaging process. Indeed, the BSC model imposes the follow-
ing assumptions:

1) Symmetry: the probability of bit-flipping from a black
symbol to a white symbol is the same as from a white
symbol to a black one;

2) Stationarity and independence: all channels are indepen-
dent and identically distributed (iid), regardless of their
particular location (i, j).

These assumptions are very strong and do not match the
real behaviour of the printing-imaging process. Indeed, when
looking at Fig. 3, one easily notices that the dot-gain effect
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Fig. 4: An illustration of the BPC model. The pattern ωij

(in blue) appears three times in the template t. This same
pattern undergoes various random deformations in x leading
to correct and incorrect symbol estimates in t̃ (see the green
and red symbols in t̃. Measuring the average behaviour of the
estimated symbol t̃ij is a relevant measure of the reliability of
the pattern.

breaks the symmetry, with black symbols having a lower prob-
ability of bit-flip than white symbols. The random deviations
of the printing process creates a lot of local dependencies on
neighbouring symbols. White symbols surrounded by black
symbols tend to flip more easily than those surrounded by
white pixels. As such, independency is not a realistic assump-
tion as well. Stationarity however, if carefuly stated, should
be an expected behaviour, as there is no physical reason for
the printing process to differ from one location to another on
the paper. Another related model with multilevel symbols has
been studied in [20].

B. Proposed Binary Pattern-Based Channel model

Based on the limitations of the standard BSC model, we
introduce the Binary Pattern-based Channel (BPC) model, a
new stochastic model aimed at better describing the local
dependencies of the printing-imaging process. To this end, we
introduce the notion of pattern:

Definition 1. A pattern ωij ⊂ T, is a small neighbourhood
surrounding symbol Tij in T. The set of all possible patterns
is denoted by Ω.

In practice, we will restrict our study to square patterns
centered around (i, j):

ωij = {Ti±a,j±b|0 ≤ a, b < h/2},

where h = 1, 3, 5, ... is fixed and describes the size of the
square.

We now introduce the assumptions of the proposed model:

Fig. 5: A visual comparison of the BSC model (on top) and
the BPC model (on bottom). In the BSC model, each symbol
Tij has the same probability of bit-flip P̄b independent of
the neighbouring patterns (in gray). In the BPC model, the
probability of bit-flip Pb(ωij) depends on the local pattern
ωij (in blue) surrounding the symbol Tij .

1) Locality: the posterior probability of T̃ij at a particular
symbol location (i, j) only depends on the local pattern
ωij surrounding it:

P(T̃ij |T) = P(T̃ij |ωij). (3)

2) Stationarity: the posterior probability does not depend on
the location inside the image. Similar patterns in T lead
to similar probability values:3

P(T̃ij |ωij) = P(T̃rs|ωrs), if ωij = ωrs. (4)

3) Posterior independance: the joint posterior probability
factorizes as:

P(T̃|T) =
∏
i,j

P(T̃ij |T). (5)

These assumptions are illustrated in Fig. 4, where a similar
pattern ω in t leads to various outcomes in the estimated tem-
plate t̃. Fig. 5 illustrates the fundamental difference between
the BSC model and the BPC model.

C. Concept of pattern reliability

With assumptions (3) and (4), one can easily prove the
expectation formula for the posterior distribution:

P(T̃ij |ωij) = Er,s:ωrs=ωij
[P(T̃rs|ωrs)]. (6)

This formula is a key to the proposed authentication scheme
as it can be estimated directly using statistical inference on a

3The printing and imaging process introduces a lot of variability. The goal
of the model is not to learn the fingerprint of a particular realization but rather
measure the average variability for each neighbourhood and to take advantage
of this knowledge. (4) should be read as an equality in distribution, allowing
every realisation of T̃i,j to be different while still following a common law,
independent of the location (i, j).
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Fig. 6: Visualisation of a codebook for 3 × 3 square patterns ω. The x-axis represents the 512 different possible patterns
ordered by their flattened binary representations. The y-axis represents the probability of bit-flipping for the central pixel of
each pattern. As can be observed, some patterns almost certainly flip with Pb(ω) close to 1, whereas others produce reliable
results with Pb(ω) close to 0. The red box indicates a selection of reliable patterns which have a probability of flipping less
than a chosen threshold µ.

training dataset. For each type of pattern ω ∈ Ω (there can be
at most 2h

2

such patterns), we learn the probability distribution
which is highly related to the printing-imaging process on
which it was trained. The natural measure associated with this
distribution is the ”probability of bit-flipping of the central
symbol in pattern ω” which we define as:

Pb(ω) := Ei,j:ωij=ω[P(T̃ij ̸= Tij |ωij)] (7)

=
1

Nω

∑
i,j:ωij=ω

1{t̃ij ̸=tij}, (8)

where 1{condition} denotes an indicator function, which is
equal to 1 when condition is true and 0 otherwise.

The last equality is a statistical estimator of the conditional
expectation where Nω represents the number of times the
pattern ω appears in T. We can thus create a codebook in
which we store all these different probability values for each
type of neighbourhood and use them as references in the
authentication scheme.

D. Proposed metrics

The BPC model described above gives us a theoretical tool
to better understanding the process of printing and acquisition
of CDP. In this subsection, we show that this model comes
with a very natural metric that can be easily implemented and
used for authentication. Indeed, given an estimated template t̃,
one can ask how likely it is that the BPC model produced such
an outcome. The answer is given by the following lemma:

Lemma 1. In the BPC model, the posterior log-likelihood
(PLL) can be computed as:

logP(T̃ = t̃|T) =
∑
i,j

log πij , (9)

where,

πij =

{
1− Pb(ωij) if t̃ij = tij

Pb(ωij) if t̃ij ̸= tij .

Proof. The proof relies on two steps. The first one is to use
posterior independence of the symbols in T̃ given T (5) and
locality (3):

logP(T̃ = t̃|T) =
∑
i,j

logP(T̃ij = t̃ij |T)

=
∑
i,j

logP(T̃ij = t̃ij |ωij).

The last step is a simple case study for tij , t̃ij ∈ {0, 1}:

P(T̃ij = t̃ij |ωij) =

{
1− Pb(ωij) if t̃ij = tij

Pb(ωij) if t̃ij ̸= tij .

■

IV. PROPOSED AUTHENTICATION ALGORITHMS

The core idea of building an authentication system based
on the BPC model relies on the construction of the codebook
C. We use a database {(tn,xn)}Ntrain

n=1 consisting of pairs of
digital templates and printed codes to learn the codebook and
compute an estimated probability of bit-flipping Pb(ω) for the
central pixel of each pattern ω ∈ Ω (see Fig. 6).

In more details, we create a dictionary Db whose keys are
the different types of neighbourhoods. For each ωij ∈ Ω,
Db[ωij ] lists the boolean values (t̃ij ̸= tij). Finally, we
compute the statistics Pb(ω) for each type of pattern ω by
averaging the corresponding list. A pseudo-code is given in
Algorithm 1.

The strength of this scheme lies in the fact that the Defender
only needs to run this algorithm on a small subset Ntrain ≪ N
of the total number of printed objects (see section V-B for a
detailed discussion of this matter), and thus does not need
to enroll all printed CDP before sending them to the public
domain. This step corresponds to the codebook in Fig. 2.

We now consider several authentication schemes based on
the BPC model and on the PLL measure.

A. The posterior log-likelihood measure

The first authentication scheme is a direct implementation
of (9). It starts by learning the codebook C, running Algo-
rithm 1 on the training set. At the authentication stage, given
a probe y, we perform the following steps:
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Algorithm 1 Algorithm for codebook estimation

Input: training set {(tn,xn)}Ntrain
n=1

Output: estimated codebook C = (ω, Pb(ω))ω∈Ω

Initialisation:
1: create a dictionary Db with the set Ω as keys and empty

lists as values.
2: for n = 1 to Ntrain do
3: estimate t̃n from xn

4: for symbol tnij in tn do
5: extract pattern ωn

ij in tn

6: extract symbol t̃nij in t̃n

7: append boolean value (t̃nij ̸= tnij) in dictionary Db at
key ωn

ij

8: end for
9: end for

10: for ω in Ω do
11: compute mean value: Pb(ω) = mean(Db[ω])
12: store the couple (ω, Pb(ω))
13: end for
14: return codebook C = (ω, Pb(ω))ω∈Ω

1) estimate t̃ from the probe y;
2) with the reference template t, the estimated t̃ and the

codebook C, compute the posterior log-likelihood of t̃
applying (9);

3) compare the score with a chosen threshold γ fixed on a
validation set to decide whether y is original or fake.4

It should be pointed out here that symbols tij located too
close to the border of the template do not have a well-defined
neighbourhood ωij . We propose two solutions to address this
problem:

• the first solution is simply to ignore these symbols and
run the model only on the symbols located on the inside
of t;

• another solution is to consider a white padding surround-
ing template t as this is the natural padding for x when
printing CDP on white paper.

B. The reliable patterns selection technique

The idea behind the reliable patterns selection technique
is to use the codebook of bit-error Pb(ω) to select only the
patterns ωij ⊂ t that have a low probability of bit-error (see
the red box in Fig. 6). In this way, we discard all regions in
y that are known to produce high error for original samples
x. The authentication steps are:

1) for each neighbourhood ωij in t, search the probability
of bit-flipping Pb(ωij) in the codebook;

2) define an attention mask mij := (Pb(ωij) ≤ µ) for some
fixed threshold µ ∈ [0, 1];

3) choose any standard metric that is computed pixel-wise
such as mean squared error, Hamming distance or Pear-
son correlation. Note that some upsampling of t might
be necessary for computation;

4If no fake samples are available in the validation set, one can simply fix
the threshold at the lowest score of the posterior log-likelihood.

Fig. 7: Visualisation of the Indigo 1 × 1 base smartphone
dataset. top-left corner is a digital template t, top-right corner
the printed CDP acquired by scanner, bottom-left the same
CDP captured by iPhone 12 Pro, bottom-right the same CDP
captured by Samsung Galaxy Note 20 Ultra.

4) weight the chosen metric d(t,y) by using the binary
mask, upsampling it if needed:

dm(t,y) =
1

M

∑
i,j

mij · d(tij , yij),M =
∑
i,j

mij . (10)

V. EXPERIMENTAL SETUP

A. Mobile Phone Dataset

For our experiments, we use the Indigo 1 × 1 base smart-
phone dataset that was created in our project5 (see Fig. 7 for
an illustration). This dataset consists of 1440 unique digital
templates t printed on an industrial printer HP Indigo 5500
DS at 812.8 dpi, and enrolled with two different smartphones:
An iPhone 12 Pro and a Samsung Galaxy Note 20 Ultra. It
also includes ML-based fakes obtained from originals by the
process of scanning with an Epson Perfection V850 Pro at
2400dpi, deepnet-based binarization, and reprinted using the
same printer. These fakes are also acquired with the same
mobile phones in the same conditions. In order to account for
the random variability of the acquisition device, the capture
by mobile phone is performed 6 times (hereafter referred to
as runs). The CDP acquired in this way are then processed
using histogram matching to a reference CDP with a uniform
histogram in order to mitigate the variability of the acquisition
process and a quality check is performed to discard poorly
captured CDP with an obvious blurring effect.

All the experiments described below are performed indepen-
dently on each capture run and the selection of samples used
for training, validation and testing is done randomly based on a
seed. Results are then averaged and combined. The templates

5The dataset is publicly available and can be found here: https://sipcloud.
unige.ch/index.php/s/tYKffnKNRgSwBAN
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Fig. 8: Visualisation of trained codebooks for two different datasets: iPhone (top) and Samsung (bottom). The blue codebook
is trained on originals, while the dashed orange codebook is trained on fakes. These results were obtained for the acquisition
run 1 and random seed 0.

t are generated with a 50% density of black symbols. The
templates t, enrolled originals x and fakes f all have a size
of 228 × 228 pixels. When testing the whole authentication
scheme, we fix the training set size to 50 samples, validation
set to 100 samples and test set to 500 samples.

B. Algorithm parameters

In order to learn the codebook, we need to fix a certain
number of parameters and choose an estimator x → t̃. As
discussed in Section II, there are many different approaches
to this problem. We decide to stick with Otsu’s algorithm for
binarization as deep binarization techniques tend to give un-
predictable outcomes which are not usable for authentication.
Moreover, we prefer to keep a simple explainable algorithm
that can also be executed on any device. We fix the size of
patterns ω in t to be of size 3× 3 for the following reasons:

• This brings the total number of possible patterns down to
|Ω| = 29 = 512 which is small enough in comparison
to the total number of patterns in a single template:
2262 = 51′076. We can thus expect to see every pattern
appear roughly 100 times in each template.

• The printing process can produce some random deviations
as discussed in Section III, but these deviations are local
in the sense that they only affect neighbouring symbols in
most cases. Thus, 3× 3 patterns are sufficient to capture
them (see Fig. 3 and 4 for an illustration).

VI. EXPERIMENTAL RESULTS

A. Codebook estimation and pattern reliability

In this experiment, we train the codebook with Algorithm 1
and visualize the results for each pattern ω ∈ Ω. Each
pattern is then associated to a number 0, 1, ..., 511, simply
based on its flattened binary representation for visualisation. In
Fig. 8, the algorithm is run on four different datasets: iPhone
originals, iPhone fakes, Samsung originals and Samsung fakes
with 500 training samples. Although fake samples might not
be available in real case scenarios, we decided to train the
codebook algorithm both on originals and fakes in order to
visualize the difference of behaviour between them. The x-
axis represents the 512 different patterns ω and the y-axis

represents the probability of bit-flip Pb(ω) for each pattern in
log-scale.

A first observation clearly indicates that some patterns are
much more reliable than others and thus confirms that the
locality hypothesis (3) of the BPC model makes sense. For
instance, the all-white pattern 511 has a probability of bit-flip
of zero. The other two patterns with a zero probability of bit-
flip are pattern 255 (one black symbol in top-left corner) and
pattern 447 (one black symbol in top-right corner).

Another very important observation is a difference in the
performances between the original CDP and fake CDP. Indeed,
as expected, fake samples have a higher probability of bit-
flip than originals (the orange curve is always above the blue
curve). The strength of the authentication scheme of the BPC
model relies on this difference and our ultimate goal is to
select only the patterns where this difference is big. Notice
also that this difference is bigger for the iPhone dataset than
for the Samsung dataset which explains why the authentication
scheme is less powerful on the latter.

Finally, another very interesting observation is that the be-
haviour of the codebook is very similar for both smartphones.
This allows us to test cross-device performances where the
codebook is trained on one smartphone and the authentication
is performed using the other smartphone.

B. Codebook sensitivity to training set

The goal of this second experiment is to test the stability
of the codebook estimation with respect to the number of
training samples Ntrain. As discussed in Section V-B, every
pattern appears 100 times on average in each template, it
thus makes sense to run the algorithm on very small training
sets. In order to measure the performance of a codebook C
learned on a training set {(tn,xn)}Ntrain

n=1 , we compare it with
a reference codebook Cref learned on a big dataset of 500 pairs
{(tn,xn)}500n=1. The comparison is simply done by computing
an average ℓ1-distance between the codebooks:

d1(C, Cref ) =
1

|Ω|
∑
ω∈Ω

|Pb(ω)− P ref
b (ω)|. (11)
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Fig. 9: Histograms of measures d(t,y) or d(t, t̃) for various metrics on originals (in blue) and fakes (in orange). The top row
is measured on the iPhone dataset and the bottom row on the Samsung dataset. The left-most column shows the ROC curve
of these histograms in terms of False Positive Rate (FPR) and True Positive Rate (TPR). These results were obtained for the
acquisition run 1 and random seed 0.

Fig. 10 shows the results of this study for different training
sets size with a number of samples going from 1 to 100
randomly selected. The curves show the average distance and
the standard deviation for 30 different runs. What we can see is
that when using 50 samples, the probabilities in the codebook
C differ with the reference by less than 1% on average and the
variability is very small. This explains why we decided to use
50 training samples in our experiments. We also notice that the
Samsung dataset produces higher variability and less accurate
estimations, again pointing out the fact that this dataset is
less stable. This behaviour can be explained by the higher
variability of images acquired by Samsung in terms of blur
and focusing comparatively to the images acquired by iPhone.
Overall, images captured with Samsung have a lower quality
than those captured with iPhone.

C. Performance of PLL measure

In this experiment, we test the performances of the authen-
tication scheme based on the posterior log-likelihood measure
detailed in Section IV-A. The PLL measure is based on a
codebook trained with 50 samples selected randomly and the
testing set consists of 500 triples {(tn,xn, fn)}500n=1 for both
datasets. The PLL measure is compared to various standard
metrics such as:

• the Hamming distance (HAMM) between t̃ and t;
• the mean-squared-error (MSE) between y and t;
• the Pearson correlation (PCOR) between y and t;
• the Manhattan distance (L1) between y and t.
Fig. 9 shows the histograms of the different metrics on

originals and fakes. The first observation that we can make is
that the standard metrics are very bad at separating originals
and fakes. This is further confirmed by examining the receiver

0 20 40 60 80 100

Number of training samples Ntrain

10 2

1
d

is
ta

n
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o
 

re
f
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samsung

Fig. 10: Stability of the codebook estimation as a function of
the number of samples used at training time. The solid curves
shows the mean distance to the reference codebook and the
shaded area the standard deviation for 30 random initialisations
of the dataset.

operating characteristic (ROC) curves of these metrics. On the
other hand, the PLL metric is already performing quite good
in this setup, with an almost non-overlapping histogram in the
case of the iPhone dataset.

D. Authentication based on reliable patterns

We test here the second scheme of authentication based on
the BPC model and measure the metrics presented above only
restricted to reliable patterns as presented in Section IV-B.

To this end, we test several different thresholds Pb(ω) ≤ µ
and compute a masked version of the metrics using (10).
Fig. 11 shows the different ROC curves obtained for the
various metrics.
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TABLE II: Same-device and cross-device test of separability between originals and fakes in terms of minimal average probability
of error (12) for each dataset and various metrics (in percent). The best results for each dataset are highlighted. Note that
the trained codebook is only used for PLL and masked metrics. These results were obtained by averaging over 30 different
random initialisations.

Datasets Non-masked metrics d(t, y) Masked metrics dm(t, y) with µ = 0.01

test codebook PLL HAMM MSE PCOR L1 PLL HAMM MSE PCOR L1

iphone iphone 1.88 21.15 22.91 17.12 20.07 0.80 0.87 12.52 1.99 6.64

iphone samsung 2.52 - - - - 1.09 1.07 15.49 1.93 8.44

samsung iphone 14.63 32.69 33.65 29.87 30.20 10.91 12.24 22.43 13.29 14.11

samsung samsung 11.93 - - - - 7.89 8.78 23.09 10.36 14.67
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Fig. 11: ROC curves for masked measures on reliable patterns dm(t,y). The top row is measured on the iPhone dataset and the
bottom row on the Samsung dataset. The different colors represent different choices of threshold µ, meaning that the similarity
measure (10) is only performed on reliable patterns with probability of bit-flipping Pb(ω) ≤ µ.

The top row shows results on the iPhone dataset and the
bottom row, results on the Samsung dataset. As one can see,
the restriction of the metric to patterns with low probability of
bit-flipping drastically enhances the performance of the met-
rics. For instance, the standard Hamming distance is generally
performing poorly on the iPhone dataset, but with a correct
choice of threshold µ, it is able to separate originals and fakes
almost perfectly. Even the PLL metric, which was already
outperforming other metrics is enhanced by the mask. Another
point to notice is that if we set the threshold value too low, the
performances of the authentication scheme are getting worse,
as there is only a few patterns left for authentication. Note
that the choice µ = 1.0 corresponds to the standard metrics,
where all patterns contribute to the final aggregated score.

E. Authentication accuracy of BPC model

To compare all different approaches in a unified way and to
establish the achievable authentication accuracy, we measure
the performance of the different authentication schemes by

using the minimal average probability of error, which measures
the separability between originals and fakes:

Pmin
error = min

γ

(1− TPRγ) ·Norig + FPRγ ·Nfake

Norig +Nfake
. (12)

This measure computes an average between the probability
of miss (1 − TPRγ) and the probability of false acceptance
FPRγ , weighted by the number of original and fake samples
for a decision threshold set at γ. We then choose the value of
γ that minimizes this probability of error. We find this value
to be much more indicative of the authentication capability of
a given scheme than the Area Under Curve (AUC).

The results are presented in Table II. The codebook is
trained on either the iPhone or the Samsung dataset and
this codebook is then used for the authentication with both
smartphones to test cross-device performances. Results are
presented both for standard metrics and for masked metrics
with a fixed threshold µ = 0.01. The results are averaged
over all 6 runs with randomization of training/testing set.
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The first observation we can make is that the proposed
authentication schemes significantly outperform the traditional
approaches. Indeed, the error in classification drops from an
average 20% of error for classical metrics, which is useless
in practical applications, to a solid 1% error for the iPhone
dataset for the best metrics.

The performances on Samsung dataset are not as impressive
as the quality of the images are poorer than those acquired with
iPhone but, nevertheless, we still see a clear improvement by
using our approach. Cross-device performances, i.e., training
the codebook on one device and performing authentication
on another, are comparable to same-device performances but
slightly less accurate. As such, this demonstrates how impor-
tant it is to carefully choose the acquisition device.

F. Classifier baseline

In order to show the soundness of the codebook approach
jointly with machine learning, we perform the following
experiment involving a Support Vector Machine (SVM) clas-
sifier [21] trained directly on codebooks. The goal of this
Machine-Learning-based experiment is to demonstrate that the
information contained in the codebooks is sufficient to perform
reliable classification. Our approach can be summarized in the
following way for both one-class and two-class SVM models:
for each pair (tn,xn) and, if available, (tn, fn) in the dataset
where n = 1, ..., N :

1) Run the codebook estimation Algorithm 1 based on the
pair (tn,xn) or (tn, fn) only. This outputs two lists of
codebooks {Cn

x}Nn=1 and {Cn
f }Nn=1 which act as statistics

of the particular couples (tn,xn) and (tn, fn);
2) Divide these lists into a training set {(Cn

x , Cn
f )}

Ntrain
n=1 and

a testing set {(Cn
x , Cn

f )}
Ntest
n=1 ;

3) • For one-class SVM: Train the model based on
{Cn

x}
Ntrain
n=1 ;

• For two-class SVM: Train the model based on
{(Cn

x , Cn
f )}

Ntrain
n=1 ;

4) Use the test set to compute the probability of error Perror

score which is reported in Table III.

This experiment was done in two setups. A first setup,
referred to as ”full SVM”, where the model is trained on the
full codebook with all 512 binary patterns taken as input, that
is both reliable and unreliable channels. The second setup,
referred to as ”masked SVM”, where the model is trained only
on reliable patterns, with µ = 0.01. For this experiment, we
select non-overlapping traih launch game changed how many
saw open world experiences. Vast in size, deeply systemic,
with a completely freeform approach to exploration, combat
and puzzles. Few games match its scope for experimental
play opportunities, and few give the player so much sense of
authority over their own disconing set and testing set with
Ntrain = Ntest = 500 chosen randomly across the full
dataset, and we use the radial-basis function (RBF) kernel.
The hyperparameters of the SVM are optimized on the testing
set using grid-search.

The results are presented in Table III. One-class SVM
trained on the full codebook performs similarly to standard

TABLE III: one-class SVM and two-class SVM trained on
codebook features. The table shows the average probability
of error (in percent) in classification for a trained model. The
SVM column is trained on the full codebook while the masked
SVM column is trained only on reliable patterns. The results
are averaged across five random selections of training and
testing set.

full SVM masked SVM

Codebook one-class two-class one-class two-class

iphone 21.86 0.00 2.30 0.10

samsung 31.56 0.00 17.24 1.06

non-masked metrics shown in Table II at the task of dis-
criminating original and fake samples. On the other hand,
training the model only on reliable patterns greatly improves
the capacity of the SVM model to classify them correctly. The
results of two-class SVM are also very interesting. Indeed,
classification based on codebooks shows perfect separability
demonstrating that the codebooks represent a sufficient statistic
for the classification task. However, training the two-class
SVM requires the knowledge of fakes whereas training one-
class SVM is agnostic to this requirement. In general, focusing
only on reliable patterns tends to decrease the accuracy of the
two-class SVM. Our current hypothesis is that, by putting a
hard threshold selection on patterns Pb(ω) ≤ µ, we discard
some patterns ω that still contain relevant features.

These observations should however be mitigated by the fact
that the two-class SVM does not represent practical situations
as having a full access to fake samples is an unrealistic
assumption. In this regard, one-class SVM represents a more
realistic scenario for which our approach shows an improve-
ment.

G. Pattern-wise contribution to authentication

The final experiment we conduct on this dataset is a more
in-depth study of the choice of optimal threshold Pb(ω) ≤ µ.
Indeed, the test with different thresholds has demonstrated that
the optimal choice of µ relies on a tradeoff between keeping
too many unreliable patterns that are uninformative in terms
of authentication score (µ ↑ 1) and having too few of them
thus decreasing the overall capacity of distinguising originals
and fakes (µ ↓ 0). This tradeoff is well illustrated in Fig. 12
where we represent the choice of threshold µ on the x-axis
and the minimum probability of error as Pmin

error on the y-
axis (see the Section VI-E for a description of this measure of
performance). This plot clearly indicates that the probability of
error reaches a minimal value around µ = 0.01 for all different
metrics. Results based on iPhone dataset and Samsung dataset
have similar behaviour.

Yet another way of measuring the contribution of each
individual pattern ω ∈ Ω to the authentication capacity is to
measure a masked metric dmω (t,y) where the mask mω is
non-zero only on the central pixel of a chosen pattern ω ∈ Ω.
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(b) Samsung dataset

Fig. 12: Visualisation of the minimal probability of error (12) as a function of threshold µ on reliable patterns for iPhone
dataset. Results are shown for various masked metrics.
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Fig. 13: Visualisation of the pattern-wise Hamming distance dmω (t, t̃). The pattern on the left has a small probability of bit-flip
while the pattern on the right has a high probability of bit-flip. The ROC curve measures the separability between originals
and fakes in both cases.

This is done in Fig. 13 for the Hamming distance. The graphics
here show that reliable patterns in terms of probability of bit-
flipping help discriminate between originals and fakes, while
unreliable patterns mix them up.

VII. CONCLUSION

In this paper, we introduced the Binary Pattern-based Chan-
nel model, a new mathematical model for the description of
the Printing-Imaging pipeline of copy detection patterns.

We proposed two novel authentication schemes for smart-
phones based on this model which give a viable alternative to
the standard metrics, while still maintaining full interpretabil-
ity of the results. We showed that our new authentication

scheme can correctly detect ML-based attacks, in contrast to
the standard metrics based on digital templates. Compared to
modern deep learning approaches, our model requires very few
training data and is very efficient to be run in practice, while
still offering great performances against powerful ML attacks.

For future work, we aim at continuing to explore this
model and further investigate the link between authentication
accuracy and reliability in terms of bit-flipping. We are also
interested in generalizing this approach to other printed un-
clonable features and different printing technologies.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3359510

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

REFERENCES

[1] B. Zhu, J. Wu, and M. S. Kankanhalli, “Print signatures for document
authentication,” in Proceedings of the 10th ACM conference on Com-
puter and communications security, 2003, pp. 145–154.

[2] G. Adams, S. Pollard, and S. Simske, “A study of the interaction of
paper substrates on printed forensic imaging,” in Proceedings of the
11th ACM symposium on Document engineering, 2011, pp. 263–266.

[3] S. Voloshynovskiy, M. Diephuis, F. Beekhof, O. Koval, and B. Keel,
“Towards reproducible results in authentication based on physical non-
cloneable functions: The forensic authentication microstructure optical
set (famos),” in 2012 IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE, 2012, pp. 43–48.

[4] J. Picard, “Digital authentication with copy-detection patterns,” in Op-
tical Security and Counterfeit Deterrence Techniques V, vol. 5310.
International Society for Optics and Photonics, 2004, pp. 176–183.

[5] J. Picard, P. Landry, and M. Bolay, “Counterfeit detection with qr codes,”
in Proceedings of the 21st ACM Symposium on Document Engineering,
2021, pp. 1–4.

[6] R. Chaban, O. Taran, J. Tutt, T. Holotyak, S. Bonev, and
S. Voloshynovskiy, “Machine learning attack on copy detection patterns:
are 1x1 patterns cloneable?” in IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), December 2021.

[7] O. Taran, J. Tutt, T. Holotyak, R. Chaban, S. Bonev, and
S. Voloshynovskiy, “Mobile authentication of copy detection patterns,”
arXiv preprint arXiv:2203.02397, 2022.

[8] B. Pulfer, Y. Belousov, J. Tutt, R. Chaban, O. Taran, T. Holotyak, and
S. Voloshynovskiy, “Anomaly localization for copy detection patterns
through print estimation,” in IEEE International Workshop on Informa-
tion Forensics and Security (WIFS), Shanghai, China, December 2022.

[9] Y. Belousov, B. Pulfer, R. Chaban, J. Tutt, O. Taran, T. Holotyak, and
S. Voloshynovskiy, “Digital twins of physical printing-imaging channel,”
in IEEE International Workshop on Information Forensics and Security
(WIFS), Shanghai, China, December 2022.

[10] J. Tutt, O. Taran, R. Chaban, B. Pulfer, Y. Belousov, T. Holotyak, and
S. Voloshynovskiy, “Mathematical model of printing-imaging channel
for blind detection of fake copy detection patterns,” in IEEE Inter-
national Workshop on Information Forensics and Security (WIFS),
Shanghai, China, 12 2022.

[11] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2012.
[12] S. Voloshynovskiy, T. Holotyak, and P. Bas, “Physical object authenti-

cation: detection-theoretic comparison of natural and artificial random-
ness,” in 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2016, pp. 2029–2033.

[13] T. Holotyak, S. Voloshynovskiy, F. Beekhof, and O. Koval, “Fast
identification of highly distorted images,” in Proceedings of SPIE /
Media Forensics and Security XII, San Jose, USA, January 21–24 2010.

[14] T. Holotyak, S. Voloshynovskiy, F. Farhadzadeh, O. Koval, and
F. Beekhof, “Fast physical object identification based on unclonable fea-
tures and soft fingerprinting,” in International Conference on Acoustics,
Speech and Signal Processing ICASSP2011, Prague, Czech Republic,
May, 22-27 2011.

[15] E. Khermaza, I. Tkachenko, and J. Picard, “Can copy detection patterns
be copied? evaluating the performance of attacks and highlighting
the role of the detector,” in 2021 IEEE International Workshop on
Information Forensics and Security (WIFS). IEEE, 2021, pp. 1–6.
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