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Abstract—Copy Detection Patterns (CDPs) are crucial ele-
ments in modern security applications, playing a vital role
in safeguarding industries such as food, pharmaceuticals, and
cosmetics. Current performance evaluations of CDPs predom-
inantly rely on empirical setups using simplistic metrics like
Hamming distances or Pearson correlation. These methods are
often inadequate due to their sensitivity to distortions, degra-
dation, and their limitations to stationary statistics of printing
and imaging. Additionally, machine learning-based approaches
suffer from distribution biases and fail to generalize to unseen
counterfeit samples. Given the critical importance of CDPs
in preventing counterfeiting, including the counterfeit vaccines
issue highlighted during the COVID-19 pandemic, there is an
urgent need for provable performance guarantees across various
criteria. This paper aims to establish a theoretical framework to
derive optimal criteria for the analysis, optimization, and future
development of CDP authentication technologies, ensuring their
reliability and effectiveness in diverse security scenarios.

Index Terms—Copy detection patterns, Hamming distance,
channel reliability, Neymann-Pearson test, channel aggregation,
probability of error.

I. INTRODUCTION

Copy Detection Patterns (CDPs) have emerged as indis-
pensable tools in modern security frameworks, particularly in
sectors where the integrity and authenticity of products are
paramount [1]–[3]. Industries such as food, pharmaceuticals,
and cosmetics heavily rely on CDPs to combat counterfeiting,
ensuring consumer safety and maintaining product integrity.
The urgency of this issue has been underscored by the prolifer-
ation of counterfeit vaccines during the COVID-19 pandemic,
highlighting the critical need for reliable anti-counterfeiting
measures. CDPs are essentially random binary patterns that
possess high entropy, meaning the probability of black and
white dots in these codes is equal to 0.5. These patterns are
reproduced on physical media using high-resolution printing or
laser engraving. Authentication of CDPs involves comparing
the physical patterns to their corresponding digital templates.
The fundamental idea is that any attempt to counterfeit these
patterns will introduce additional distortions during scanning
and reproducing processes, allowing the authentication system
to distinguish between genuine and fake CDPs.
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The challenge in CDP authentication is twofold. Firstly,
attackers might use machine learning techniques to produce
high-quality fakes. They can scan the printed CDPs from
physical objects, preprocess them to estimate the original dig-
ital templates, and then reprint these estimates. These attacks,
known as machine learning-based copy attacks, represent the
most sophisticated and challenging threat, as described in [4]–
[7]. Secondly, the imaging device used to acquire the patterns
introduces additional degradation during the acquisition pro-
cess, further complicating the authentication task. Another sig-
nificant technical constraint is the need to authenticate CDPs
based solely on the digital templates from which they are
printed. Authentication based on physically scanned patterns
is impractical due to the difficulty of managing the massive
production volumes. Therefore, this study focuses on technolo-
gies that can authenticate printed CDPs using modern digital
printing techniques and mobile phone acquisitions, relying
only on the digital templates. Furthermore, the current methods
for authenticating CDPs are often inadequate. Empirical setups
typically utilize simplistic metrics like Hamming distances or
Pearson correlation. While these metrics offer some insights,
they fall short when accounting for the distortions and degra-
dations that CDPs may encounter in real-world scenarios [8].
Machine learning methods, on the other hand, present their
own set of challenges. Although they can provide sophisticated
analysis, these methods are prone to distribution biases. When
faced with new counterfeit samples that were not part of the
training data, these models often fail to perform reliably [9].
This limitation is especially concerning given the dynamic and
evolving nature of counterfeiting tactics.

In light of these challenges, there is a pressing need to
develop a comprehensive analytical framework that provides
provable guarantees on the performance of CDPs across a
range of criteria. Such a framework would not only enhance
the reliability and effectiveness of CDPs but also guide future
developments in authentication technologies. This paper seeks
to address this need by proposing a theoretical approach to
derive optimal criteria for the analysis and optimization of
CDP performance. Through this framework, we aim to ensure
that CDP technologies can be systematically improved to meet
the rigorous demands of modern security applications.

In previous publications [10], [11], we demonstrated that



Fig. 1: An illustration of the theoretical framework under study. Given a fixed pattern ω and a CDP probe y, one identifies all
appearances of the pattern ω (left) in the digital template t. For each location (i, j) of ω in t, one can associate a random bit-
flipping δi,j . The Hamming distance Dω between t and t̃ for the pattern ω follows a Binomial distribution which is compared
with the reference Binomial distributions of originals and fakes CDP. Based on the reference distributions, an optimal separation
bound γcrit is computed which minimizes the average probability of error.

different CDP patterns, composed of 3 × 3 elements, have
varying probabilities of bit-flipping after printing, scanning or
mobile phone image acquisition and binarization. We identi-
fied 512 different patterns and characterized their reliability
based on the context of their 3× 3 neighborhoods. However,
those studies employed simple rules, using masking based on
empirically optimized thresholds, and focused only on reli-
able channels characterized by low bit-flipping probabilities.
Patterns with high bit-flipping probabilities were disregarded
completely. Furthermore, simple metrics such as Hamming
distance or Pearson correlation were used for the reliable
patterns based CDP authentication.

In contrast, this new study explores more sophisticated
rules that go beyond hard decision-making and the binary
characterization of reliable and unreliable patterns. Instead,
this paper introduces three different criteria for the measure
of quality of the acquired CDP based on well-known sta-
tistical tests namely: The Hamming distance test; the cross-
entropy between the probability of bit-flipping and a ref-
erence probability; and Neymann-Pearson likelihood ratio.
We investigate different fusion rules and decision strategies
for binarized CDP. Specifically, we consider two approaches:
making a decision first and then aggregating the results versus
aggregating everything first and then making a decision. This
paper presents theoretical findings on how to optimize these
strategies for enhanced CDP authentication.

II. INFORMATION FLOW IN COPY DETECTION PATTERNS

In this section, we reformulate the classical authentication
process of CDP using an information theoretic approach [12].
When trying to identify a probe sample y, one typically
uses binarization and compares the binarized probe t̃ with
the original template t using Hamming distance d(t, t̃). A

decision threshold γ ∈ [0, 1] is then fixed to decide whether
the probe y is genuine or counterfeited:

d(t, t̃) ≷ γB, (1)

where B denotes the total number of symbols in t. From the
point of view of information theory and following the analysis
done in [11], this process can be described as a Markov chain:
T → Y → T̃, where T is a random binary matrix in which
each symbol has equal probability of being black or white, Y
is a random matrix with real value entries between 0 and 1 and
T̃ is a binary matrix with fixed probability for each symbol.
In this framework, each symbol transition can be described as
a noisy binary channel:

T̃ij = Tij ⊕ δij , (2)

where Pb(i, j) = P(Tij ̸= T̃ij) is the probability of bit-flip for
symbol Tij , δij = 1 if there is a bit-flip and δij = 0, otherwise
(see Fig. 1, left). In this setting, the focus is on being able to
describe the posterior distribution P(T̃|T).

The main contribution of [11] was to precisely describe
the variability of the probability of bit-flipping Pb(i, j) as a
function of the pixel position (i, j) by introducing the Binary
Pattern-based Channel (BPC) model. This model makes the
assumption that the probability of bit-flipping of the symbol
Tij only depends on a small subset of symbols directly
surrounding symbol Tij , which we denote as ωij . Typically:

ωij = {Ti±a,j±b|0 ≤ a, b < h/2}, (3)

for an h × h square pattern centered around Tij . Apart from
this local dependency, the model assumes independence of the
probability of bit-flipping with respect to the location of the



pattern. That is, if ωij = ωkl are two identical patterns located
in different coordinates, then:

Pb(i, j) = Pb(k, l). (4)

Based on these assumptions, the characterization of the binary
channels Tij → T̃ij reduces to the study of the binary channels
Tω → T̃ω , where Tω indicates the central symbol of pattern ω.
The advantage of this approach is the reduction of dimension,
from the study of B different channels to M = 2h

2

(in our
experiments, B = 51′984, h = 3 and M = 512). According to
this model, one can compute the Hamming distance for each
pattern ω:

Dω = dω(T, T̃) =
∑
i,j:

ωij=ω

δij , (5)

and compute a pattern-wise probability of bit-flipping:

Py
b (ω) =

1

Lω
E[Dω], (6)

where Lω denotes the number of pattern ω appearing in T
and Py

b (ω) is the probability of bit-flipping for pattern ω. As
such, the model transforms a digital probe y into a feature
vector of size M : {Py

b (ω)}M−1
ω=0 .1

III. A STATISTICAL VIEWPOINT

In this paper, we use the BPC model [11] as a baseline and
describe the problem of authentication of CDP as a collection
of independent channel-wise statistical tests. Under this model,
each pattern ω gives rise to a random binomial variable
Dω independent of each other. Based on this mathematical
description, we focus on different ways to measure channel
performances and study how they can be optimally combined
together to strengthen authentication. That is, given a probe y,
decide whether it is an original x or a fake f . We denote H0 the
hypothesis that probe y is an original and H1 the hypothesis
that y is a fake. Under H0, the reference original codebook is
denoted as C0 = {Pb(ω)}M−1

ω=0 while, under H1, the reference
fake codebook is denoted as C1 = {Qb(ω)}M−1

ω=0 . Given an
unidentified probe y, and a fixed pattern ω, we perform the
following steps (see Fig. 1 for an illustration):

• Identify each appearance of pattern ω in the reference
template t and extract the central pixel of each of these
patterns: t1, ..., tLω ;

• Binarize the probe y 7→ t̃ and extract the corresponding
central pixels: t̃1, ..., t̃Lω ;

• Compute the bit-flipping values δk = tk ⊕ t̃k for each
k = 1, ..., Lω , where δk denotes the indicator function of
bit-flipping with δk = 1, if tk ̸= t̃k, and 0, otherwise.

The BPC model defines that the bit-flipping values δ1, ..., δLω

are sampled according to a Bernoulli distribution with a fixed
probability Py

b (ω) which can be estimated empirically as:

Py
b (ω) ≈

1

Lω

Lω∑
k=1

δk. (7)

1Profitting from the fact that, on average, Lω = B/M ≈ 100, one can
estimate the probability of bit-flipping empirically for each of the patterns
solely based on one pair (t, t̃) and build a feature vector for a given probe y.

The goal of authentication is now to decide whether this
empirical probability is more likely to be Pb(ω) or Qb(ω)
and provide bounds on this decision [13].

A. Hamming distance test

In the following sections, all analyses are conducted on a
fixed pattern ω and then extended to all ω. As such, and to
ease the notations, we remove the explicit reference to the
pattern in the indices, except when formulating final results:

Dω → D, Lω → L, Pb(ω) → Pb, Qb(ω) → Qb.

Following the analysis in [12], the Hamming distance is
described by a binomial distribution:

D =

L∑
k=1

δk ∼ Binom(L;Py
b ). (8)

If we suppose that we have access to reference codebooks for
original and fakes, we can formulate the Hamming distance
test and measure the probability of miss as:

Pm(γ) = PH0(D > γL)

=

L∑
k=⌊γL⌋+1

(
L

k

)
P k
b (1− Pb)

L−k, (9)

and the probability of false acceptance as:

Pfa(γ) = PH1
(D ≤ γL) =

⌊γL⌋∑
k=0

(
L

k

)
Qk

b (1−Qb)
L−k. (10)

One way to choose an optimal decision threshold γ is to
minimize the average probability of error as:

min
γ∈[0,1]

Perr(γ) = min
γ∈[0,1]

Pm(γ) + Pfa(γ)

2
, (11)

assuming both hypotheses H0 and H1 are equiprobable (see
Fig. 1, right). Our goal, as defined in the following sections, is
to better study these probability of errors and derive an optimal
bound for each channel by making an explicit link between
this approach and the Neymann-Pearson test.

B. Posterior likelihood approach

The authentication problem can be studied from the point
of view of the likelihood function. Given a sequence of real-
isations δ1, ..., δL ∈ {0, 1} and a reference probability of bit-
flipping Pb, one can measure the likelihood that these samples
were drawn from a Bernoulli distribution with parameter Pb.
We write:

P(t̃1, ..., t̃L|t1, ..., tL) =
L∏

k=1

P(t̃k|tk)

=

L∏
k=1

P δk
b · (1− Pb)

1−δk

= PD
b · (1− Pb)

L−D, (12)

where D is the Hamming distance defined in (8) and follows
a Binomial law. Note that this derivation is based on the



assumption of the BPC model that each bit-flipping δk is
identically distributed and independent. Taking the logarithm
on both sides, one arrives to the formula:

logP(t̃1, ..., t̃L|t1, ..., tL) = D ·logPb+(L−D)·log (1− Pb) .
(13)

These types of derivations are well known [13] and explicit
the link between minimization of Hamming distance and
maximization of log-likelihood. Taking the expectation with
respect to the posterior distribution on both sides yields the
following result:

Proposition III.1. The average log-likelihood is given by:

1

Lω
E[logP(t̃1, ..., t̃Lω |t1, ..., tLω )] = −H(Py

b (ω);Pb(ω)),

(14)
where the right-hand side designates the cross-entropy be-
tween the unknown probe distribution Py

b (ω) and the reference
distribution Pb(ω).

Proof. The proof is straightforward from (13) since
D ∼ Binom(L,Py

b ), and thus 1
LE[D] = Py

b . ■

Formula (14) is very useful to test the adequacy of probe
y to a certain reference probability Pb. In practice one can
use (7) to estimate these quantities empirically. This result
also gives new insights on the Posterior Log Likelihood (PLL)
metric introduced in [10].

Corollary 1. The PLL metric can be computed as an average
on all channels:

PLL(y; C) = −
M−1∑
ω=0

Lω · H(Py
b (ω);Pb(ω)). (15)

C. Neymann-Pearson optimal bound

Using Neymann-Pearson terminology, we will designate
the type I error in this problem, as accepting the probe as
an original when it is a fake (false acceptance). The type
II error would be to reject a probe when it is an original
(true miss). The problem is, by nature, asymmetrical as it is
much more harmful in real life scenarios to accept a fake
product than to throw away a genuine one (think for instance
of fake drugs). Neymann-Pearson lemma [14], then provides
an optimal decision criterion for a significance test at level α.
That is, if we fix the Type I error to be equal to α, the optimal
decision statistic is given by the likelihood ratio test:

R =
PH0

(t̃1, ..., t̃L|t1, ..., tL)
PH1

(t̃1, ..., t̃L|t1, ..., tL)
> ρ. (16)

Proposition III.2. The likelihood ratio test (16) is equivalent
to:

H(Py
b (ω);Qb(ω))−H(Py

b (ω);Pb(ω)) >
log ρ

Lω
, (17)

and this test is asymptotically optimal (with Lω → +∞) as
long as Qb(ω) ̸= Pb(ω).

Proof. By computing 1
L logR and following the same deriva-

tion as (12), one arrives to the following formula:

1

L
logR =

D

L
log

Pb

Qb
+

L−D

L
log

1− Pb

1−Qb
. (18)

Equation (17) then follows by taking the expectation on both
sides as in (14). Under hypothesis H0, the random variable
D ∼ Binom(L;Pb) follows a binomial distribution and
thus:

1

L
E[logR|H0] = Pb · log

Pb

Qb
+ (1− Pb) · log

1− Pb

1−Qb

= DKL(Pb||Qb), (19)

where DKL(Pb||Qb) denotes the Kullback-Leibler divergence
between the Bernoulli distributions given by Pb and Qb. With
similar computations one can show that:

1

L
E[logR|H1] = −DKL(Qb||Pb). (20)

Finally, with similar approach, one shows that the variance
Var( logR

L ) → 0, when L → +∞ and so these quantities con-
centrate around their means, yielding asymptotic optimality,
independant of ρ. ■

Note that (17) can be seen as a direct extension of the
approach in [11]. Indeed, the PLL metric was solely based on
a single cross-entropy term, whereas the Neymann-Pearson
test is based on the difference of two cross-entropies. PLL
can thus be considered as an analogy to a one-class decision
based solely on Pb, while NP-test is a two-class decision which
requires the knowledge of both Pb and Qb.

Proposition III.3. The Neymann-Pearson test and the Ham-
ming distance test R > ρ and D < γL are equivalent if
Pb ≤ Qb and:

log ρ

L
= DKL(γ||Qb)−DKL(γ||Pb). (21)

When ρ = 1, that is when both likelihoods are equal, we can
derive the critical separation boundary independent of L:

γcrit =

(
1 +

logPb − logQb

log(1−Qb)− log(1− Pb)

)−1

. (22)

Proof. To prove (21), we start with relation (18) and use the
facts that D < γL, log( Pb

Qb
) ≤ 0 and log( 1−Pb

1−Qb
) ≥ 0 to derive

the lowerbound (21). Equation (22) is obtained from (21) by
setting ρ = 0 and isolating γ. ■

IV. CHANNELS AGGREGATION STRATEGIES

All statistical approaches described in Section III, were
computed independently for each channel and different ap-
proaches to optimal thresholds selection were given. Applying
a decision threshold to each channel transforms the real-valued
feature vector {Py

b (ω)}M−1
ω=0 into a binary decision vector:

{∆ω}M−1
ω=0 , where ∆ω ∈ {0, 1}. In both situations, we are

left with the problem of optimally aggregating these pattern-
wise scores into a final decision score Sfinal. We propose



here a generic way of describing linear aggregation strategies.
A linear aggregation strategy is a weighted sum:

SAD
final =

∑
ω

Py
b (ω) ·αω or, SDA

final =
∑
ω

∆ω ·αω, (23)

where the coefficients αω ∈ R are chosen according to an
aggregation strategy. A final decision based on this aggregation
is performed by applying a threshold to Sfinal. These two
approaches will later be referred to as Aggregate first - Decide
next (AD) for the left one and Decide first - Aggregate
next (DA) for the one on the right. In [10], [11], the (AD)
aggregation was performed according to two simple criterions:
(S1) Averaging: Taking the average of all statistics with equal

contribution: αω = 1.
(S2) Reliable patterns [10]: Selecting only those patterns for

which Pb(ω) ≤ µ for a fixed threshold µ and taking the
average of all statistics on these patterns:

αω =

{
1, if Pb(ω) ≤ µ,
0, else.

These approaches, although showing promising results,
were chosen empirically and lacked a deeper investigation
which could lead to a better understanding of the decision pro-
cess. In this paper, we now introduce a systematic approach,
based on the average probability of error:
(S3) Minimal Probability of error: Fixing a threshold

ν ∈ [0, 1] and only aggregating the patterns which have
a probability of classification error smaller than ν:

αω =

{
1, if Perr(ω) ≤ ν,
0, else.

(S4) 2C-SVM optimal: Training a 2-class linear SVM [15] on
the statistics and extract the coefficients learned by the
model as ”optimal” machine learning coefficients αω .
We then sort them according to their absolute value and
aggregate the k firsts: |αω1 | ≥ |αω2 | ≥ |αω3 | ≥ ... .

V. EXPERIMENTAL RESULTS

A. 1x1 Indigo base smartphone dataset

The dataset2 of CDP that we use in the following experiment
is fully presented in [11]. It consists of 1440 unique triples
of digital template, original printed and fake CDP (t,x, f)
enrolled with an iPhone 12 Pro during 6 capture runs. The
CDP acquired in this way are then processed using histogram
matching to a reference CDP and binarized using Otsu’s
method. In the following experiments, the dataset is divided
into two randomly chosen train set and test set, which consist
of 500 triples. The train set is used to compute reference
codebooks of originals {Pb(ω)}M−1

ω=0 and fakes {Qb(ω)}M−1
ω=0 .

B. Reliability and authentication performance

The results of this experiment are shown in Fig. 2. For
each pattern ω independently, we measure the minimal average

2The dataset is publicly available and can be found here: https://sipcloud.
unige.ch/index.php/s/tYKffnKNRgSwBAN
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Fig. 2: Average probability of error between originals and
fakes samples as a function of the probability of bit-flipping
of each channel. The optimal probability of error is computed
using the theoretical model (in red) and empirically on the test
set (in blue). Both curves show a close match.

classification error Perr both theoretical (red dashed curve)
by referring to the optimal threshold selection γcrit derived
in (22) for Lω = 100, and experimental (blue curve) by
performing an optimal threshold selection on the test set. The
results show that the theoretical predictions of the average
probability of error based on the BPC model closely match
the empirical measure based on the testing set. Indeed, the red
and blue curve are very close together. Finally, we also note
that pattern reliability, that is low probability of bit-flipping,
does not necessarily imply low classification error3. Indeed,
the plot clearly indicates that the best performing patterns are
those located between Pb(ω) = 10−3 and Pb(ω) = 2 · 10−2.
This observation is a clear motivation for us to investigate
strategy (S3) based on a bound ν on Perr for the aggregation
strategy and compare it with strategy (S2).

C. Aggregation strategies

In this second experiment, we test the various aggregations
strategies introduced in Section IV. Fig. 3 shows the final
average error of classification as a function of the number
k of patterns used for authentication. The selection of the k
best patterns depends on the strategy used for aggregation and
is fully described in Section IV.

Surprisingly, even though the strategy (S3) based on the
minimal Perr is optimal for each pattern taken individually,
aggregating according to this strategy does not improve the
final decision score on this dataset. Indeed, the aggregation
strategy (S2) based on the minimization of Pb(ω) introduced
in [11] still outperforms this theoretically optimal criterion,
while still being solely based on a reference codebook of
originals. Finally, the fully supervised aggregation scheme
(S4) based on linear 2-class SVM performs optimally and,
contrary to the other aggregation schemes, does not worsen
when the number of patterns used gets too big. This approach,
although theoretically interesting, requires the knowledge of

3The idea being that an all-white or all-black pattern, while being very
reliable (Pb(ω) is almost 0) is completely useless for classification since fakes
will not be wrong when estimating these either and so Qb(ω) = Pb(ω) for
those patterns making them indistinguishable from a theoretical point of view.
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Fig. 3: A plot of the final classification error probability based
on the final score Sfinal for each aggregation strategy as a
function of the number of channels aggregated. Continuous
curves correspond to (AD) and dashed curves correspond to
(DA). The best k channels are different for each strategy and
depend on the optimality criterion.

both original CDP and fake CDP to be applied and we
conjecture that it should be prone to errors against other types
of unseen fakes [9].

D. Final classification performance

In this third experiment, we compare the final aggregated
average classification error for the different aggregating strate-
gies introduced in Section IV. A direct comparison is done
between single-shot aggregated performance and multi-shot
aggregated performance, where all 6 capture runs are used and
fused before computing the Hamming distance test, effectively
increasing the number Lω of symbols in each CDP by a factor
of 6. (The behaviour of these symbols is of course strongly
correlated but still enhances the prediction capacity.)

When looking at Table I, a striking observation is the
outstanding enhancement of performance when using multi-
shot prediction. Indeed, all aggregation strategies benefit from
this approach. We analyze this improvement as an illustration
of Prop. III.2. Without much surprise, the fully supervised
linear 2C-SVM aggregation strategy (S4) performs the best.
It is still remarkable to notice that such an approach is
able to perfectly separate originals and fakes when all other
approaches still miss by a few. Finally, the (DA) approach also
shows an interesting enhancement in performance compared
to the (AD) approach which was used in the previous papers.

VI. CONCLUSION

In this article, we presented a theoretical analysis of the
Binary Pattern-based Channel Model [11]. We derived op-
timal bounds for each channel for the classification task
and introduced a structured description for the aggregation
strategies of the different channels. By comparing with a
real dataset of smartphone acquired CDP, we demonstrated
that the BPC model correctly simulates the authentication
process and allows to reason about the design of optimal
aggregation strategies. In future works, we plan to pursue the
analysis of the interplay between the theoretical BPC model

TABLE I: Results of minimal average Perr (in percent) for
the aggregation of channels based on four different strategies
with Aggregate-Decide (AD) or Decide-Aggregate (DA). Both
single-shot and multi-shot settings are compared.

Aggregation Strategy
(S1) (S2) (S3) (S4)

AD
single-shot 20.29 0.36 3.07 0.10

multi-shot 14.30 0.04 0.13 0.00

DA
single-shot 4.12 0.40 0.96 0.11

multi-shot 1.20 0.05 0.06 0.00

and the real life CDP datasets. Extending this research to new
types of fakes and continue to explore the design of optimal
aggregation strategies.
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