Single-component privacy guarantees in Helper Data Systems and Sparse Coding with Ambiguation

Behrooz Razeghi, Slava Voloshynovskiy Univ. of Geneva

Taras Stanko, <u>Boris Škorić</u> Eindhoven Univ. of Technology

WIFS 2019 December 12

Outline

- Biometric privacy
- Attacker model & use case
- Two main approaches

-Helper Data Systems

-Sparse Coding with Ambiguation

- Single-component privacy
 - -motivation
 - -results

Biometric privacy

Not "secret". Why protect stored biometric data?

- Function creep
- Privacy
 - medical conditions
 - database crossmatching
 - tracking
- Security of biometric authentication
 - fake biometrics
 - sensor spoofing
- Framing
 - synthesized fingerprints/DNA at crime scene

Attacker model & use case

Use case: Biometric authentication

- biometric only.
 - no typed PINs
 - no prover device

Attacker model:

- no access to biometric during enrolment / verification
- full access to enrolled data
 - insider
 - hacker
- full access to encryption keys
- there is no special secure hardware

Problem: How to store biometric enrolment data?

Approach #1: Helper Data System + hash

- needs error correction
- adversary sees redundancy data

Two-stage secure error correction

- 1. "Zero Leakage" disretizing HDS
- 2. Code Offset Method

"<u>Helper Data System</u>" (secure sketch, fuzzy extractor)

Store enrolment data: (ID, W₁, W₂, h). The W_i should not leak about S_i.

Zero-Leakage discretizing HDS

[de Groot et al. 2012] [Stanko et al. 2017]

- split data into 1D features (real numbers)
- apply stage1 HDS to each dimension separately

Helper Data w = "least signifcant digits"

- in quantile form
- does not leak about Most Significant Digits (s)

Reconstruction: go to nearest interval that has correct index *w*

The Code Offset Method

[Bennett et al. 1991] [Juels+Wattenberg 1999] [Dodis et al. 2008]

Use linear Error-Correcting Code, with syndrome decoder. Message length k; codeword length n; syndrome length n-k. x roisy stringroisy string

Enrollment:W = Syn X"least significant digits" !Reconstruction: $\hat{X} = X' \oplus SynDec(W \oplus Syn X')$
yields error pattern $yields error pattern Syn(x \oplus x')$

The Spammed Code Offset Method

[Skoric + de Vreede 2014]

hide w in lots of fake helper data

Approach #2: Sparse Coding

Sparse Coding with Ambiguation

- sort of Locality Sensitive Hash, but with artificial noise
- no error-correcting code

Verification of vector y: inner product $u \cdot \psi(My)$ should be large enough

Privacy

	Helper Data Approach	Sparse Coding approach
Philosophy	Reveal least significant part of Xnoisy anywaydoes not represent X, but noise	 Reveal location of reliable parts use <i>polarisation</i> effect of random projections add fake entries for privacy
Advantages	compactwell controlled privacy	No ECC
Disadvantages	input must have high entropyerror-correcting code	 reveals signs of reliable parts enrolment data not compact (?)

Privacy

	Helper Data Approach	Sparse Coding approach
Philosophy	Reveal least significant part of Xnoisy anywaydoes not represent X, but noise	 Reveal location of reliable parts use <i>polarisation</i> effect of random projections add fake entries for privacy
Advantages	 compact well controlled privacy	No ECC
Disadvantages	input must have high entropyerror-correcting code	 reveals signs of reliable parts enrolment data not compact (?)

Single-component privacy guarantees

Biometric feature vector $X \subseteq \mathbb{R}^N$

Motivation

• What if one biometric feature X_i reveals a medical condition?

We investigate two aspects of such leakage

- sign of X_i
- |X_i| > threshold?

Results for HDS: first stage

Under the assumption of even prob. distribution of X_i

Leakage about sign(X_i)

- none, if #quant.intervals is even
- (some leakage if odd)

Leakage about binary variable $Z = [|X_i| > \tau]$

- assuming large threshold τ: no leakage at m=2
- nonzero at m>2

m = #helper data values

 $p_0 = Prob[S=0]$

Results for HDS: 2nd stage

Sign of X_i becomes bit value

- input for 2nd stage
- Does the Code Offset Method leak this bit?

Answer: the leakage is exponentially small.

Total leakage about COM input
$$pprox (N-k)[1-h\left(rac{1}{2}-rac{1}{2}(1-2arepsilon)^r
ight)]$$

ε = bit error rate r = row weight of the code

Results for Sparse Coding with Ambiguation

 Very little leakage about magnitude of X_i

• Sign of X_i:

Work in progress. Adversary's reconstruction prob. of whole X is small.

Summary

- Biometrics
- Single-component privacy guarantees
- Comparison of two template protection approaches (apples vs. pears)

Summary

- Biometrics
- Single-component privacy guarantees
- Comparison of two template protection approaches (apples vs. pears)

Apples and pears are different, but both taste good!

- Helper Data approach (1st stage):
 - choose even #quant.intervals
 - one-bit helper data works best
- Sparse Coding approach:
 - minimal leakage about single-component magnitude
 - low overall reconstruction probability