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Biometric privacy

Not "secret". Why protect stored biometric data?

* Function creep
* Privacy
—medical conditions
— database crossmatching
—tracking
 Security of biometric authentication
—fake biometrics
—sensor spoofing
* Framing

— synthesized fingerprints/DNA at crime scene



Attacker model & use case

Use case: Biometric authentication

* biometric only.
—no typed PINs

— no prover device

Attacker model:
* no access to biometric during enrolment / verification

e full access to enrolled data
— insider
— hacker

* full access to encryption keys
 there is no special secure hardware

Problem: How to store biometric enrolment data?



Approach #1: Helper Data System + hash

Store hash of biometric data < just like passwords!

* needs error correction
e adversary sees redundancy data

Two-stage secure error correction "Helper Data System"
1. "Zero Leakage" disretizing HDS (secure sketch, fuzzy extractor)

2. Code Offset Method
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Store enrolment data: (ID, W, W,, h). The Wj should not leak about Sj.
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Zero-Leakage discretizing HDS

[de Groot et al. 2012]
[Stanko et al. 2017]

* split data into 1D features (real numbers)
* apply stagel HDS to each dimension separately

s=10 s=1"s=2 s=3

Helper Data w = "least signifcant digits"
* in quantile form
* does not leak about Most Significant Digits (s)

Reconstruction: go to nearest interval that has correct index w




[Bennett et al. 1991]

The Code Offset Method Juels+Wattenberg 1989

[Dodis et al. 2008]
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Use linear Error-Correcting Code,
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[Bennett et al. 1991]

The Code Offset Method Juels+Wattenberg 1989

[Dodis et al. 2008]

Use linear Error-Correcting Code, 1
with syndrome decoder. parity
Message length k; check |n
codeword length n; _ X matrix
syndrome length n-k. syndrome] ™ noisy string v

<« n-k > < n > €« n-k—>
Enroliment: W =Syn X "least significant digits" !

N

Reconstruction: X =X'@® SynDec(W®Syn X')

A — )

yields error pattern Syn(x®x')

The Spammed Code Offset Method [Skoric + de Vreede 2014]

* hide w in lots of fake helper data



Approach #2: Sparse Coding  (razegni et al. 2017

Sparse Coding with Ambiguation
 sort of Locality Sensitive Hash, but with artificial noise

* no error-correcting code

'y R i
:@: apply random @ @
' ® . projection matrix M; . .
o : L
Y P L store (ID, M, u) as
: : 1 . : ' . : u 04 /’
x € RN :'—> b((Mx),) —— — addfake — —— enrolment data
o entries 'Y
X P Vo
@' per-component @ ;9
: ternary discre- : :
:e: tization P L
@ L @ L
€ {-1,0,+1}" z € {-1,0,+1}"

Verification of vector y: inner product u-(My) should be large enough
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Privacy

Helper Data Approach Sparse Coding approach
Philosophy Reveal least significant part of X Reveal location of reliable parts
* noisy anyway  use polarisation effect of random
* does not represent X, but noise projections
» add fake entries for privacy
Advantages e compact No ECC

well controlled privacy

Disadvantages

input must have high entropy
* error-correcting code

* reveals signs of reliable parts
* enrolment data not compact (?)
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CAVEAT

 homomorphic crypto

* Locality Sensitive Hashing

We are ignoring other approaches!

<€ slow; needs trusted party

\ privacy unclear
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Single-component privacy guarantees

Biometric feature vector X €RN

Motivation
e What if one biometric feature X reveals a medical condition?

We investigate two aspects of such leakage
* sign of X
* |X;| >threshold?



Results for HDS: first stage

Under the assumption of even prob.distribution of X;

Leakage about sign(X;)
m = #helper data values

* none, if #guant.intervals is even
p, = Prob[S=0]

* (some leakage if odd)
Leakage about binary variable Z=[ |X;| >t]
* assuming large threshold t: no leakage at m=2

* nonzero at m>2

H(Z) Result for m—>eo

po =1/2




Results for HDS: 2nd stage

Sign of X; becomes bit value
* input for 2"d stage
* Does the Code Offset Method leak this bit?

Answer: the leakage is exponentially small.

Total leakage 1 1

about COM input ~ (N o k)[l —h (5 o 5(1 T 2E)T>]

€ = bit error rate
r = row weight of the code



Results for Sparse Coding with Ambiguation

‘ I[(M,U; Z)/H(Z) for M=I

* Very little leakage
about magnitude of X, 08/

0.6
04|
0.2
0 | | | |
0 0.2 0.4 0.6 0.8 1
o Sign of X : fraction of fake entries

Work in progress.
Adversary's reconstruction
prob. of whole X is small.

16



Summary

 Biometrics
* Single-component privacy guarantees

* Comparison of two template protection approaches
(apples vs. pears)



Summary

* Biometrics
* Single-component privacy guarantees

* Comparison of two template protection approaches
(apples vs. pears) '

Apples and pears are different, but both taste good!

* Helper Data approach (15 stage):
— choose even #guant.intervals
— one-bit helper data works best
 Sparse Coding approach:
— minimal leakage about single-component magnitude
— low overall reconstruction probability
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