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Abstract—We propose a new computationally efficient privacy-
preserving identification framework based on layered sparse
coding. The key idea of the proposed framework is a sparsifying
transform learning with ambiguization, which consists of a
trained linear map, a component-wise nonlinearity and a privacy
amplification. We introduce a practical identification framework,
which consists of two phases: public and private identification.
The public untrusted server provides the fast search service based
on the sparse privacy protected codebook stored at its side. The
private trusted server or the local client application performs the
refined accurate similarity search using the results of the public
search and the layered sparse codebooks stored at its side. The
private search is performed in the decoded domain and also the
accuracy of private search is chosen based on the authorization
level of the client. The efficiency of the proposed method is
in computational complexity of encoding, decoding, “encryption”
(ambiguization) and “decryption” (purification) as well as storage
complexity of the codebooks.

Index Terms—data privacy; sparse codebook; transform learn-
ing; successive refinement; ambiguization.

I. INTRODUCTION

Privacy-preserving identification is of great importance for
the growing amount of applications that require fast and
accurate identification. Third parties are assumed to perform
the expected services but are curious about the nature of the
data content of the queries. These applications include but are
not limited to the internet-of-things (IoT), biometrics, clinical
reports, etc.

In this work, we propose a new distributed framework of
privacy-preserving identification based on successive refine-
ment. The successive refinement of information was first stud-
ied for the classic source coding problem [1]. The performance
of this problem is formulated by a rate-distortion theory. The
objective is to achieve the rate-distortion bound at each stage.
In [2] the authors proposed the Sparse Ternary Coding (STC)
scheme for fast search in large scale identification problems.
The theoretical results of the STC scheme are studied in [3].
Inspired by the successive refinement of information problem,
the authors proposed a multi-layer network which successively
generates sparse ternary codes, which closely achieve the
Shannon lower bound of the distortion-rate function.
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Fig. 1: General block diagram of the proposed framework.

A. Our Contribution
In this paper, we propose a new framework of multi-stage

identification using successive refinement with sparse ternary
codes at each layer of the privacy-preserving identification.
The proposed privacy-preserving mechanism is based on the
ambiguization, i.e., addition of noise to non-zero sparse data
representation in the transform domain. We demonstrate that
the security of this scheme does not rely on the secrecy of
transform. Accordingly, we develop a distributed search frame-
work (Fig. 1) with a granted granular access to the results of
the search based on the level of authorization expressed in the
knowledge of codebook and vote refinement. We demonstrate
that the identification based on compressed STC representation
could be a good first stage for the fast public identification,
while the authorized private users can benefit from the refined
results enjoying the accurate upgrades in the reconstructed
real space with a low computational complexity. Up to our
best knowledge, the proposed scheme is among the first that
is based on the successive refinement with the sparse ternary
coding bridging the gap to the theoretical performance limits.
B. Notation

Matrices and vectors are denoted by boldface upper-case
(X) and lower-case (x) letters, respectively. We consider the
same notation for a random vector x and its realization. The
difference should be clear from the context. xi denotes the
i-th entry of vector x. For a matrix X, x(j) denotes the j-
th column of X. The superscript (·)† stands for the pseudo-
inverse and (·)T stands for the transpose. We use the notation
[N ] for the set {1, 2, ..., N}.
C. Outline of the Paper

The remainder of the paper is organized as follows. In Sec.
II, the problem formulation is introduced. Then, in Sec. III we
present our framework. We provide the performance analysis
in Sec. IV. Finally, conclusions are drawn in Sec. V.
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II. PROBLEM FORMULATION

Suppose that an owner has a collection of M raw vectors
x(m),m ∈ [M ] in the database X = [x(1), · · · ,x(M)],
where each raw vector x(m),m ∈ [M ] from a set X ⊂ RN
is a random vector with distribution p (x) and bounded vari-
ance σ2

x. In general, the input data might be raw or based
on extracted features such as those from (aggregated) local
descriptors [4]–[6], or the top layer of a neural network
[7] or the latent space of auto-encoders [8]. The user has
a query y(m) ∈ RN which is a noisy version of x(m),
i.e., y(m) = x(m) + z, where we assume z ∈ RN is a
Gaussian noise vector with distribution N

(
0, σ2

zIN
)
. The user

is interested in some information about the subset L (y) of the
γ-NN (or γ-ANN) of y. The owner subcontracts the similarity
search to an entity called the server. The clients and data
owner attempt at protecting their data from (public) server
side analysis, which is assumed to be honest but curious.

III. PROPOSED FRAMEWORK

A. Framework Overview
Our framework is composed of the following five steps:
1) Preparation at Owner Side: The owner generates one

public sparse codebook plus K private sparse codebooks from
the media data that he owns (Fig. 2). The public codebook
is sent to the public storage server (e.g., Google Site) and
the K private sparse codebooks are sent to the private server
storage (e.g., “Friend” Sites). The public sparse codebook is
generated using the learned sparsifying transform followed
by an element-wise nonlinearity and a privacy amplification.
The K private codebooks are generated by the successive
refinement encoder that will be explained in the text below.

2) Indexing at Server Sides: The public and private servers
index the received sparse codes.

3) Querying at Client Side: The client generates a sparse
code from his query data using the same transformation
scheme used for public search (Fig. 3). Then, the client sends
the sparse code of his query data to the public server and his
original domain query to the private server.

4) Initial Search at Public Server Side: The server runs
a similarity search to identify the sparse codes that are most
similar to the query (Fig. 3). The public list, which consists of
indices of the most similar codes, is sent to the private server.

5) Multi-layer List Refinement at Private Server: The pri-
vate server looks at his first layer codebook and decodes
(reconstructs) the sparse codes that are within the public list.
Then he runs a similarity search using the received query and
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Fig. 3: Public identification scheme.

the decoded sparse codes, i.e., the similarity is computed in
the original domain. This similarity search results in the first
private list, which is accessible to the authorized users at level
1. Next, the private server uses his second layer codebook
and decodes the sparse codes with indices within the initial
private list. The second private list is hereby computed using
similarity search between the received query and superposition
of the decoded sparse codes of this layer and the previous
layer. This list is accessible to the authorized users at level
2. Analogously, the private lists are refined successively by
running the similarity search between the query and the
superposition of the decoded sparse codes of each layer and
all previous layers (Fig. 4).

B. Layered Sparse Coding
1) Principal Element: The core of our coding paradigm is

as follows:
Encoder: This is defined by a mapping ϕ : RN →
{−1, 0,+1}L. Given the (raw) feature vector x(m),m∈ [M ]
the encoder generates the sparse code u(L,R)(m),m ∈ [M ]
with dimensionality L and rate R, therefore u(L,R)(m) =
ϕ (x(m)).

Indeed, our encoder is based on the sparsifying transform
learning model [9] followed by a non-linearity thresholding
function to constraint the alphabet of codes. This model
suggests that a feature vector x(m) ∈ RN is approximately
sparsifiable using a transform W ∈ RL×N , that is Wx(m) =
a(m) + ea, where a(m) ∈ RL is sparse, i.e., ‖a(m)‖0 � L,
and ea ∈ RL is the representation error of the feature vector or
residual in the transform domain. The sparse coding problem
for this model is a direct constraint projection problem. This
sparse approximation is as follows:

â(m)= arg min
a(m)∈RL

‖Wx(m)−a(m)‖22 + λΩ (a(m)),∀m ∈ [M ] .

The above direct problem has a closed-form solution for
any of the two important regularizers Ω (·) = ‖ · ‖0 or
Ω (·) = ‖ · ‖1. Analogous to [10], we consider the `0-
“norm” as our sparsity-inducing penalty. In this case, the
solution â(m) is obtained exactly by hard-thresholding the
projection Wx(m) and keeping the Sx entries of the largest
magnitudes while setting the remaining low magnitude en-
tries to zero. For this purpose, we define an intermediate
vector f(m) , Wx(m) ∈ RL and denote by λx the Sx-
th largest magnitude amongst the set {|f1(m)|, ..., |fL(m)|}.
Then the closed-form solution is achieved by applying a hard-
thresholding operator to f(m), which is defined as a (m) =
Hλx(f (m)) = 1|fl(m)|≥λx

f(m),∀m ∈ [M ] ,∀l ∈ [L]. Now
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Fig. 4: Private multiple access identification scheme.

we impose extra constraint on the alphabet of our codes by
applying the ternary hash mapping to Hλx

(Wx(m)) as:

u (m) , ψλx
(Wx (m)) ∈ {−1, 0,+1}L, ∀m ∈ [M ] , (1)

where ψλx (Wx (m)) = sign (Hλx (Wx (m))). The bit rate
of this code can be formulated as R = 1

L log2

((
L
Sx

)
2Sx

)
.

We denote by ϕ (·) the encoder in general, therefore, the
codeword u(m) with block-length L and rate R is denoted
by u(L,R)(m) = ϕ (x(m)) ,m ∈ [M ].

In general, we have a joint learning problem that can be
formulated as:
(
Ŵ,Â

)
=arg min

(W,A)
‖WX−A‖2F +βWΩW (W)+βAΩA(A) ,

(2)
where βW ≥ 0 and βA ≥ 0 are regularization parame-
ters, ΩW (W) and ΩA(A) are the constraints on the linear
mapper W and sparse (but not ternarized) code matrix A,
respectively. The algorithm for the above problem alternates
between solving for A = Hλ (WX) (sparse coding step) and
W = UWVT

W (transform update step), whilst the other vari-
ables are kept fixed. Finally, the ternarized sparse codebook
U(L,R) is obtained as U(L,R) = ϕ (X), which consists of M
sparse codewords u(L,R)(m) ∈ [M ].

Decoder: This is a mapping ϕ−1 :{−1, 0,+1}L→RN . Base
on u(L,R)(m) generated at the encoder, the decoder produces
reconstruction x̂(m) = ϕ−1

(
u(L,R)(m)

)
= W†u(L,R)(m).

That is, our decoding is simply a pseudo-inverse operation.
2) Overall Scheme: In [11], the authors studied the re-

construction performance of STC and scaled STC based
on distortion-rate function. It is shown that for relatively
small rates the ternarized sparsified codes almost achieve the
Shannon distortion-rate function for i.i.d. Gaussian distributed
data. In [12], the authors extended the concept of STC to
multi-layer STC, a codebook-free scheme that successively
refines the reconstruction of the residuals of previous lay-
ers. Based on the results in [11] and [12] we formulate
our layered sparse coding that provides a multiple-access
privacy-preserving identification scheme. To this end, first
we generate our first coebook with block-length L and rate
R1 as: U(L,R1) = ϕ1 (X) = ψλ1(W1X). Next, we do
reconstruction as: X̂[1] = ϕ−11

(
U(L,R1)

)
= W†

1U(L,R1). This
provides the residual R[1] = X − X̂[1]. Now, we encode the

residual of the first layer to generate the second codebook
with block-length L and rate R2 as: U(L,R2) = ϕ2

(
R[1]

)
=

ψλ2

(
W2R

[1]
)
. The reconstructed data as well as the residual

of the second layer obtained as X̂[2] = ϕ−12

(
U(L,R2)

)
and

R[2] = X−
(
X̂[1] + X̂[2]

)
, respectively. In the same way, the

layered sparse coding scheme, initialized with i = 0, can be
formulated as:

U(L,Ri+1) = ϕi+1

(
R[i]

)
,

X̂[i] = ϕ−1i
(
U(L,Ri)

)
,

R[i] = X−
i∑

j=1

X̂[j]. (3)

Note that X̂[1]→· · ·→X̂[K] forms a Markov chain. The algo-
rithm successively refines the original database X over (asym-
ptotically large) K stages, such that ‖X−∑K

i=1 X̂
[i]‖2F ≤ND.

C. Privacy Amplification Scheme

The core idea of our privacy amplification scheme is to
increase the general entropy of our sparse codes via adding
some randomness to it. To this end, let U ,V ⊆ T be two
subspaces such that T = U + V , where T is the space of
L-dimensional sparse codes. So, every vector ua ∈ T has
at least one expression as ua = u + v,u ∈ U ,v ∈ V . If
we have U ∩ V = {0}, then every vector ua ∈ T has the
unique expression ua = u + v,u ∈ U ,v ∈ V and we write
T = U⊕V . Also, T is called the direct sum of U and V . Now,
let U be the space of non-zero components of T and V be the
space of zero components of T . The idea of our ambiguization
scheme is to set ambiguization noise n such that n ∈ V .
Furthermore, since (T , 〈·, ·〉) is an inner product space and
V = U⊥ , {v ∈ V : 〈u,v〉 = 0,∀u ∈ U}, T = U ⊕ U⊥ is
orthogonal direct sum of U and U⊥. It is clear that dim T = L,
dim U=Sx and dim U⊥=L−Sx. For more details about the
performance of ambiguization scheme we refer the reader to
[10].

1) Owner’s Privacy Amplification: Based on our definition,
the data owner simply adds random samples with alphabet
{−1,+1} to the zero-components of his sparse codebook
U(L,R) and sends the ambiguized sparse codebook U(L,Rp)

to the public server. We denote by Sns
the sparsity level

of ambiguization noise at the public server. Note that 0 ≤
Sns

≤ L− Sx. Furthermore, the owner may send only a
fraction Lp < L of his sparse codes to the public server. In
[11], the authors analyzed this scheme with more details. In
general, the public ambiguized sparse codebook generated as
U(Lp,Rp) =A

(
U(L,R)

)
with the block-length Lp and the rate

Rp, where A is an ambiguization function, which consists of
randomness addition as well as codeword subspace selection.

2) Client’s Privacy Amplification: In order to prevent re-
construction of exact information about the client’s interests
at the public server side, the client ambiguizes his sparse code
b by adding Snq

random samples with alphabet {−1,+1} to
the zero-components of his query. We denote by bp = b⊕ n
the public query.



(a) (b)
Fig. 5: The relation between probability of correct identifica-
tion and a) sparsity ratio, b) encoding rate.

D. Algorithm
1) Preparation at Owner Side: The owner generates offline

the sparse codebook U(L,R1) with the trained linear map
W1 followed by the element-wise nonlinearity thresholding
operator ψλ1

(·), i.e., U(L,R1) = ψλ1
(W1X) = ϕ1 (X).

Then, the owner performs the privacy amplification on code-
book U(L,R1) to generate the public sparse codebook Ua =
A
(
U(L,R1)

)
with block-length Lp and rate Rp. This am-

biguized codebook is outsourced to the public server storage.
Next, the owner generates successively the sparse codebooks
U(L,Ri), i = 2, ...,K from the first sparse codebook U(L,R1).
Therefore, the database X is encoded by total rate R1 +R2 +
· · · + RK . The K sparse codebooks U(L,Ri), i ∈ [K] are
outsourced to the private server storage. The block diagram
of codebooks generation is illustrated in Fig. 2.

2) Indexing at Server Sides: The public and private servers
index the received sparse codes. It can be indexed as in [2].

3) Querying at Client Side: The client generates the sparse
codeword b from its query y, using the shared public trained
linear map W1 followed by the element-wise nonlinearity
operator ψλ1

(·), therefore b = ψλ1
(W1y). Then, the client

ambiguizes his code by adding Snq
random samples with

alphabet {−1,+1} to his code. The ambiguized public query
bp = b⊕n is send to the public server. The client also sends
his original domain query y to the private server. Each client
has a pre-defined authorization level at the private sever.

4) Initial Search at Public Server Side: The public
server seeks all {ua (m) ,m ∈ [M ]} ANNs in the ra-
dius γpLp from the query bp in order to produce an ini-
tial public list Lp of possible candidates as Lp (bp) ={
m ∈ [M ] : dAp

(ua (m) ,bp) ≤ γpLp
}

, where dAp
(·, ·) is a

similarity measure in space Ap. Next, the public server sends
the initial list Lp to the private server.

One can use different similarity measures dAp
(·, ·). How-

ever, due to many interesting properties, we consider a new
similarity and dissimilarity measures based on the support
intersection of the sparse codewords [3], [13]. To this end,
we decompose sparse codes into positive part and negative
part as u(m) = u+(m) + u−(m) and bp = b+

p + b−p , where
u+(m) = max (u(m),0) and b+

p = max (bp,0) correspond
to positive components and u−(m) = max (−u(m),0) and
b−p = max (−bp,0) correspond to negative components. The
similarity score Sim(m) between u(m) and bp is defined as:

Sim(m) = ‖u+(m)� b+
p ‖1 + ‖u−(m)� b−p ‖1, (4)

(a) (b)
Fig. 6: Comparison between the probability of correct identi-
fication at the public server and private server.

and the dissimilarity score Dis(m) between u(m) and bp is
defined as:

Dis(m) = ‖u+(m)� b−p ‖1 + ‖u−(m)� b+
p ‖1, (5)

where � is the Hadamard product. For more details about the
the theoretical aspects of the considered similarity measure,
we refer the reader to [13].

The public list Lp is composed of the indices whose
similarity score Sim(m),m ∈ [M ] is higher than a threshold
and dissimilarity score Dis(m),m ∈ [M ] is below a thresh-
old. Another option is to define a normalized similarity as
ν(m) = Sim(m)/(Sim(m) + Dis(m)),∀m ∈ [M ]. Therefore,
the public list Lp is composed of the indices of the γ largest
ν(m)’s. Finally, the public server sends back the public list
Lp to the private server. The public server can either fix the
threshold or the number of γ similar elements.

5) Multiple Access List Refinement at Private Server: The
private server receives the public list Lp, then it considers
first layer codebook U(L,R1), which is the clean and full
length version of the public codebook Ua. Next, the private
server reconstructs the codewords with indices reported on
the public list as x̂[1](m) = ϕ−11

(
u(L,R1)(m)

)
,m ∈ Lp. It

then computes the distance measure between private query y
and reconstructed sparse codewords x̂[1](m),m ∈ Lp in the
original signal domain. This will produced the first private list
Ls1 (y) = {m ∈ Lp : ‖y − x̂[1](m)‖2 ≤ γs1N}. Next, he re-
constructs the codewords u(L,R2)(m),m ∈ Ls1 of the second
layer codebook U(L,R2). The second private list is obtained as
Ls2 (y) = {m ∈ Ls1 : ‖y −

(
x̂[1](m) + x̂[2]

)
‖
2
≤ γs2N}. In

the same approach, at the K-th layer the private list is given as
LsK (y) = {m ∈ LsK−1

: ‖y −∑K
i=1 x̂

[i](m)‖
2
≤ γsKN}.

IV. PERFORMANCE ANALYSIS

In this section we analyze the performance of our method in
the terms of probability of correct identification Pid as well as
privacy leakage. To this end we consider a database X of M =
100K random vectors with dimensionality N = 256, which are
generated from the distribution N (0, I). We then generate the
noisy version of X with three different signal-to-noise-ratios
(SNRs) 10dB, 3dB and 0dB, where SNR = 10 log10

1
σ2
z

. We
consider square sparsifying transform, i.e., L = N . Moreover,
the sparsity level of the public sparse codewords as well as
the public query code are considered the same.

In Fig. 5, we depict the probability of correctly identifying
the true query in the public list Lp as the function of sparsity
ratio Sx/L and encoding rate R. The red, blue and black solid
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Fig. 7: The relation between normalized similarity and: a)
sparsity ratio, b) encoding rate.

lines show the performance of our method in the case that we
impose no privacy amplification for the stored public database
and the client’s query. Next, we ambiguized our sparse public
codebook by adding Sns

= 0.5 (L− Sx) random samples in
the co-support of the public codewords. Finally, we complete
our scenario by considering the privacy protection of query as
well as owner’s database., i.e., we ambiguized our codes by
adding Snq = 0.25 (L− Sx) samples in the co-support of the
public query codewords.

In Fig. 6, we compare the probability of correct identifi-
cation at the public and private servers. We set the privacy
amplification parameters of public codebook and client’s query
as Sns

= 0.5 (L− Sx) and Snq
= 0.25 (L−Sx), respectively.

Then, we perform fast public search in the transform domain
and send back the public list Lp to the private server. The
results demonstrate high performance just by one layer simi-
larity search in the original domain.

Based on the defined similarity measure in (4) and (5), in
Fig. 7, we illustrate the relation between normalized similarity
ν and sparsity ratio Sx/L and encoding rate R. As it is
shown, at the sparsity ratios (rates) close to zero the similarity
measure grows much faster than dissimilarity measure such
that we have the maximal normalized similarity for relatively
small sparsity ratios (rates). However, after a certain level the
dissimilarity measure grows faster than the similarity measure.

In [10] and [11], we defined the privacy measures in the
terms of ‘reconstruction leakage’ and ‘clustering leakage’.
Based on the results in [10] and [11], the curious public
server cannot perform clustering the stored public database.
Moreover, the un-authorized clients cannot infer the structure
of database. In order to address the reconstruction leakage
of the proposed privacy-preserving identification scheme, con-
sider the mutual information between the random sequence x,
the reconstructed random sequence x̂a at the public server and
the reconstructed random sequences x̂[i], i ∈ [K] at the private
server. Using the data-processing inequality and considering
the markovity of random sequences, we have:

I(x; x̂a) ≤ I(x; x̂[1]) ≤ · · · ≤ I(x; x̂[1], · · · x̂[K]).

In Fig. 8, we illustrate the distortion-rate behavior at the
public and private servers, which interprets the ‘reconstruction’
leakage in these scenarios. Fig. 8a depicts the reconstruction
leakage for three different ambiguization levels at the public
sparse codebook and compares them with the Shannon lower
bound. In Fig. 8b, we illustrate the performance of reconstruc-
tion at the private server and compare it with Shannon lower

(a) (b)
Fig. 8: Distortion-rate behavior at the a) public server, b)
private server.

bound. This plot also depicts the accuracy of private lists for
different authorization levels. Note that the illustrated results
are obtained without considering any optimal rate allocation
to our codebooks. By utilizing the optimal rate allocation
and also multi-level quantization we can closely achieve the
Shannon lower bound. That is beyond the scope of this paper.

V. CONCLUSION
We have proposed a novel distributed privacy-preserving

identification framework based on layered sparse codes with
the ambiguization and granular access to the results of iden-
tification. The initial fast search is performed on the public
server and the refined searches are performed on the distributed
private server(s). The accuracy of the private search is based
on the authorization level of the clients. The results show the
performance of proposed scheme in the terms of probability
of correct identification as well as the privacy leak measures.
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