Privacy-Preserving Identification via Layered Sparse Code Design: Distributed Servers and Multiple Access Authorization

Behrooz Razeghi, **Slava Voloshynovskiy**, Sohrab Ferdowsi and Dimche Kostadinov

Stochastic Information Processing Group University of Geneva Switzerland

September 2018

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Outline

Introduction

Proposed Framework

Fundamentals Overview Sparse Data Representation Privacy-Preserving Identification

Results

э

Privacy-preserving content identification

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

3

・ロト ・ 一下・ ・ ヨト ・ ヨト

Privacy-preserving content identification

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

Big Data & Distributed Applications Services on outsourced cloud-based systems

Privacy-preserving content identification

Biometrics Recent Trends Physical object recognition and security **Big Data & Distributed Applications** Medical/clinical applications Services on outsourced Privacy-sensitive multimedia records cloud-based systems Data owner Data owne Data use Honest-but-curios identification engine Meta data

Slava Voloshynovskiy Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Introduction Problem Formulation

Goal of privacy protection in outsourced services

(日)

- A - E - N

How do we receive a feature vector?

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

state-of-the-art

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \Longrightarrow huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering

state-of-the-art

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \implies huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering
- Group Testing / Memory Vectors
 - Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

state-of-the-art

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \implies huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering

Group Testing / Memory Vectors

- Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

Slava Voloshynovskiy

state-of-the-art

Universal Quantization

- Main Idea: projection with the dimension reduction and periodic quantization
 - Binary quantization: in the region of low projected magnitudes high ${\cal P}_b$
 - Ambiguization due to periodization of quantizer no possibility to recover data even for the authorized users
 - Server still can cluster data privacy leakages
 - Information preservation in general no link to ${\cal R}(d)$ and recovery is demonstrated so far

Introduction state-of-the-art

Sparse Approximation with Ambiguization

- Main Idea: obtain an information-preserving sparse ternary representation of the data, while ensuring privacy
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database

-

< ロ > < 同 > < 回 > < 回 > < □ > <

- Fundamentals

Part 1: Sparse Data Representation

-

- Fundamentals

Sparsification Main Idea

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fundamentals

Sparsification Main Idea

Slava Voloshynovskiy Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fundamentals

Sparsification Main Idea

э

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

- Fundamentals

Part 2: Ambiguization

э

- Fundamentals

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- Fundamentals

- $\blacktriangleright\,$ Prevent reconstruction from ${\bf u}(m)\bigoplus {\bf n}$ and from probe ${\bf y}$
- ▶ Preclude server from discovering the structure of the database \mathcal{A}

Slava Voloshynovskiy Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

-

- Fundamentals

Part 3: Privacy-Preserving Identification

-

イロン 不同 とくほう イロン

- Fundamentals

Privacy-Preserving Identification: Search Scheme I Main Idea: User discloses his probe completely

□→ < □→</p>

3 N

- Fundamentals

Privacy-Preserving Identification: Search Scheme I Main Idea: User discloses his probe completely

▲ 同 ▶ → 目 ▶

3 N

- Fundamentals

Privacy-Preserving Identification: Search Scheme II Main Idea: User sends only positions of interest

< 回 > < 回 > < 回 >

-

- Fundamentals

Privacy-Preserving Identification: Search Scheme II

Main Idea: User sends only positions of interest

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

- Fundamentals

Privacy-Preserving Identification: Search Scheme II

Main Idea: User sends only positions of interest

Overview

Proposed Framework Overview

3

イロト 不得 トイヨト イヨト

Types of Decoders

- Type I: search in the quantized \mathbf{x} and quantized \mathbf{y}
- Type II: search is based on real y and reconstructed x (just from one stage using simple pseudo-inverse of quantized x)
- Type III: search is based on real y and successively reconstructed x
 (from multiple stages as x^[1] + ··· + x^[K]) that what we propose here.

- Overview

General block diagram of the proposed framework

э

- 4 同 6 4 日 6 4 日 6

- Overview

Successive Sparse Codebooks Generation Scheme Proposed solution

Generated Private Sparse Codebooks: $U_{(L,R_1)}, U_{(L,R_2)}, ..., U_{(L,R_K)}$

- Overview

Public Identification Scheme Proposed solution

- 4 同 6 4 日 6 4 日 6

- Overview

Private Multiple-access Identification Scheme Proposed solution

Privacy-Preserving Identification via Layered Sparse Code Design

Proposed Framework

Sparse Data Representation

Sparsifying Transform

A Schematic Idea

Privacy-Preserving Identification via Layered Sparse Code Design

Proposed Framework

Sparse Data Representation

Sparsifying Transform

General Problem Formulation

Encoder:

$$\mathbf{\hat{a}}(m) = \psi\left(\mathbf{Wx}(m)\right)$$

Decoder:

$$\mathbf{\hat{x}}\left(m
ight) = \mathbf{W}^{\dagger}\mathbf{\hat{a}}\left(m
ight)$$

Slava Voloshynovskiy Stor

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

3

Sparse Data Representation

Encoder: as a projection problem (for a fixed **W**)

 $\widehat{\mathbf{a}}(m) \! = \! \mathop{\arg\min}\limits_{\mathbf{a}(m) \in \mathcal{A}^L} \left\| \mathbf{W} \mathbf{x}(m) \! - \! \mathbf{a}(m) \right\|_2^2 \! + \beta \Omega\left(\mathbf{a}(m)\right), \forall m \in [M]$

- $\mathbf{W} \in \mathbb{R}^{L \times N}$, $\mathbf{x}(m) \in \mathbb{R}^N$, $\mathbf{a}(m) \in \mathbb{R}^L$
- Closed-form solution for: $\Omega\left(.\right)=\left\|.\right\|_{0}$ and $\Omega\left(.\right)=\left\|.\right\|_{1}$

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Sparse Data Representation

Encoder: Extra constraint on the alphabet

(a)

э

Sparse Data Representation

Encoder: Extra constraint on the alphabet

Slava Voloshynovskiy Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Privacy-Preserving Identification via Layered Sparse Code Design

-Proposed Framework

Sparse Data Representation

Learning Sparsifying Transform

General Formulation: joint learning

$$\left(\hat{\mathbf{W}}, \hat{\mathbf{A}}\right) = \arg\min_{\left(\mathbf{W}, \mathbf{A}\right)} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{W}\Omega_{W}(\mathbf{W}) + \beta_{A}\Omega_{A}(\mathbf{A})$$

Sparse Coding Step (Fixed W):

$$\hat{\mathbf{A}} = \arg\min_{\mathbf{A}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{A}\Omega_{A} (\mathbf{A})$$
$$\hat{\mathbf{a}}(m) = \psi (\mathbf{W}\mathbf{x}(m))$$

Transform Update Step (Fixed A):

$$\mathbf{\hat{W}} = \arg\min_{\mathbf{W}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{W}\Omega_{W}\left(\mathbf{W}\right)$$

Linear Regression : (with quadratic regularizer)

$$\hat{\mathbf{W}} = \mathbf{A}\mathbf{X}^T \left(\mathbf{X}\mathbf{X}^T + \beta_W \mathbf{I}_N\right)^{-1}$$

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Privacy-Preserving Identification

Desired property of mapping scheme

Distance preservation in the desired radius

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

э

Probability of Correct Identification

Relation between probability of correct identification and encoding rate:

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Probability of Correct Identification

Comparison between the probability of correct identification at the public server and private server:

Slava Voloshynovskiy

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Information Loss

Distortion-rate behavior at the **public server**:

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Information Loss

Distortion-rate behavior at the private server:

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

э

Conclusions:

- Fast search is performed on the public server
- Refined searches are performed on the distributed private server(s)
- Distributed security
- Accuracy of the private search is based on the authorization level of the clients

æ

ヘロン ヘロン ヘビン ヘビン