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ABSTRACT

This paper addresses a problem of anti-counterfeiting of phys-
ical objects and aims at investigating a possibility of coun-
terfeited printable graphical code detection from a machine
learning perspectives. We investigate a fake generation via
two different deep regeneration models and study the authen-
tication capacity of several discriminators on the data set of
real printed graphical codes where different printing and scan-
ning qualities are taken into account. The obtained experi-
mental results provide a new insight on scenarios, where the
printable graphical codes can be accurately cloned and could
not be distinguished.

Index Terms— Printable graphical codes, clonability at-
tacks, adversarial discriminators, machine learning.

1. INTRODUCTION

Counterfeiting of physical objects is a very important prob-
lem for modern economies. The counterfeited products can
be danger for life, like for example pharmaceutical, life-care
products, etc., lead to market loss and damage of brands’ rep-
utation. The World Customs Organization in 2005 claimed
that nearly 25% of pharmaceutical products in developing
countries are forgeries [1].

Nowadays, there exist a lot of different techniques to pro-
tect the original products against falsification. However, it
is crucial to guarantee non-clonability of these protection el-
ements. One well known technology that is claimed to be
robust to the clonability attacks is based on Physical Unclon-
able Functions (PUFs). The main idea behind PUFs consists
in the natural randomness of microstructure of physical ob-
jects [2, 3]. The PUFs are considered as non-clonable digital
signature of substrate. This direction is gaining more popu-
larity with increasing the abilities of modern mobile phones.
However, in general, the verification process is quite sensitive
to the illumination and may require to use a special equip-
ment, like for example a portable microscope or attachable
lenses. Another quite popular nowadays technology is based
on a so called anti-copying patterns. The anti-copying pat-
terns consist of a high-density black and white texture pat-
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Fig. 1: A life cycle of the PGC: xi ∈ {0, 1}n×m is an origi-
nal code; PpD and PpA are the defender’s and attacker’s printing
processes, correspondingly; SA and SC are the attacker’s and
customer’s digitization procedure respectively; zpi ∈ Rn×m
original codes digitized by the attacker; φθp is an attacker’s
re-generation model; x̂pi ∈ {0, 1}n×m is an attacker’s estima-
tion of the xi; y

p
i and fpi ∈ Rn×m are original and fake codes

from the public domain; ϕϑp is a discrimination model.

terns. The verification process usually doesn’t require any
special equipment. Quite often, anti-copying patterns are in-
jected into the traditional 2D codes, like for example Quick
Response (QR) codes [4] or DataMatrix codes [5]. Obtained
in such a way codes referred to as Printable Graphical Codes
(PGC) are claimed to be unclonable under hand-crafted attack
[6, 7]. The robustness of these codes to the machine learning
based attacks is reported in [8, 9, 10]. In contrast to a common
belief about the non-cloneability of PGCs, [10] demonstrated
a possibility to estimate digital codes form their printed coun-
terparts in certain cases by using the deep neural networks
(DNN) composed of fully connected layers. Extending [10],
this paper aims at investigating the possibilities of the convo-
lutional DNN for cloning. In contrast to [10], where only the
non-DNN based discriminators were studied, this work aims
at investigating the robustness of the DNN based discrimina-
tors to the clonability attacks.

The main contributions of this paper are:
- We investigate the impact of the used scanner on the

quality of the produced clones on two new data sets.
- We investigate the possibilities of the attacker to clone

modern PGC with a high quality by using convolutional DNN
and we compare the obtained results with those in [10].

- We compare the robustness of the non-DNN and DNN
based adversarial discriminators to the clonability attacks.



Data set Original Laser printers Inkjet printers
SA LX CA HP

DP1E

DP1C

Table 1: Examples of the codes from DP1E and DP1C data sets.

2. PROBLEM FORMULATION

A life cycle of the PGC is shown in Fig.1. It starts from print-
ing PpD of the original binary codes {xi}Mi=1 by a defender
(manufacturer) with a printing technology p = {1, ..., P}.
The printed codes are going to the public domain. The at-
tacker aims at obtaining an accurate estimation of the origi-
nal binary codes {x̂pi }K

p

i=1, Kp ≤ M . For this he digitizes
the original printed codes using a high resolution scanner SA
and then the obtained codes {zpi }K

p

i=1 are processed via a deep
mapper φθp . The obtained estimations {x̂pi }K

p

i=1 are printed
using corresponding printing technology p (the question of
the printing technology estimation is out of scope of this pa-
per). The produced fakes are distributed in the public domain.
A customer verification consists of the digitization SC of the
codes from the public domain (using some scanner or modern
mobile phones) and their authentication through a discrimi-
nator ϕϑp that can produce either hard decision 0 or 1 (fake /
authentic) or soft one ranging from 0 to 1.

In this paper we consider the worst case assuming that,
besides the publicly available printed codes, the attacker has
an access to the corresponding original binary codes {xi}K

p

i=1

to fully explore the power of training on the side of attacker.
For the given pairs of original and scanned codes {xi, zpi }K

p

i=1,
the attacker training procedure can be generalized as:

θ̂
p

= arg min
θp

Kp∑
i=1

LA
(
xi, φθp(zpi )

)
+ λΩθp(θp), (1)

that consists in the optimization of the parameters θp of the
trained model φθp for the chosen printer p with respect to the
given loss function LA(.) and the regularization Ωθp(.) if any.

At the test stage, the scanned samples {zpi }N
p

i=1 are passed
through the pre-trained model φθp . The estimated codes
{x̂pi }N

p

i=1 printed on the corresponding equipment are intro-
duced to the public domain. The fake codes digitized by the
customer scanner technology SC we will denote as {fpi }N

p

i=1.
The defender provides a discriminator model ϕϑp to the

customers. In [10] the authors considered a situation when
the defender does not have an information advantage over the
attacker. In this work we assume that, besides an access to
the original {xi}Mi=1 and printed {ypi }Mi=1 codes, the defender
has an access to the fake codes {fpi }N

p

i=1, Np ≤ Kp, repro-

duced by the attacker with the printing technologies p similar
to those used by the defender. The discriminator model ϕϑp

aims at distinguishing the authentic codes ypi from the fakes
fpi . The training procedure can be generalized as:

ϑ̂
p

= arg min
ϑp

Np∑
i=1

α1L1

(
l(ypi ), ϕϑp(ypi )

)
+ α2L2

(
l(fpi ), ϕϑp(fpi )

)
+ βΩϑp(ϑp),

(2)

where ϕϑp(.) is the trained discriminator model with the pa-
rameters ϑp. L1(.) and L2(.) are loss functions for the origi-
nal and fake codes, respectively. For the classical DNN classi-
fier, L1(.) and L2(.) are identical. In case the more advanced
models, like for example GAN, L1(.) and L2(.) might differ.
Usually, l(.) produces code label but it might depend on the
chosen loss functions. Ωϑp denotes a regularizer on the model
parameters, if any. α1, α2 and β are the constants.

At the test stage, the sample ypi or fpi is passed through
the discriminator ϕϑp that makes either hard decision 0 or 1
(fake / authentic) or soft one ranging from 0 to 1.

3. DATA SETS DETAILS

3.1. PGC data sets

In our work, we do not target to investigate the clonability
of some particular PGC. We aim at demonstrating a general
approach applicable to the majority PGC designed with iden-
tical modulation principles. In this respect, we use the Data-
Matrix code that is an open international ISO/IEC standard
[5]. To evaluate the clonability aspects of the PGC codes
based on the DataMatrix modulation and to investigate the in-
fluence of printing and scanning technologies we create two
data sets: DP1C and DP1E. For both data sets we use 4 dig-
ital printers: 2 inkjet printers HP OfficeJet Pro 8210 (HP)
and Canon PIXMA iP7200 (CA) and 2 laser printers Lexmark
CS310 (LX) and Samsung Xpress 430 (SA). As a scanner, for
DP1C we use Canon CanoScan 9000F at 1200 ppi and Epson
Perfection V850 at 1200 ppi for DP1E. Each data set consists
of 384 original codes xi ∈ {0, 1}384×384 generated based
on the DataMatrix standard and printed and scanned codes



Train on \Test on SA LX CA HP
LinearBN

SA 0.14 0.97 0.12 0.32
LX 0.30 0.36 0.19 0.37
CA 0.25 1.09 0.12 0.34
HP 0.35 1.67 0.17 0.40

ConvBN
SA 0.10 0.60 0.17 0.34
LX 0.52 0.13 0.44 0.84
CA 0.24 1.06 0.10 0.31
HP 0.19 1.64 0.10 0.18

Table 2: DP1C: regeneration error (normalized Hamming
distance) between the original xi and regenerated x̂i codes.

ypi ∈ R384×384, p = {SA,LX,CA,HP}. The visualisation
of the sub-blocks of size 84× 84 from several codes for both
data sets are given in the Table 1.

4. TRAINING DETAILS 1

4.1. Attacker’s re-generation model

For φθp training, the pairs {xi,ypi }384i=1 were split into train-
ing (100 images), validation (50 images) and test (234 im-
ages) sub-sets. In each sub-set the codes were split into non-
overlapping blocks of size 24×24. The final size of the train-
ing set is 25 600 sub-images, the validation set contains 12
800 sub-images and the test set consists of 59 904 sub-images.

As a re-generation model φθp we use two types of DNN
architectures based on a ”bottleneck” principle [11]: (1) Lin-
earBN: linear model with the input size equals to 576 and
6 hidden layers of size 256, 128, 36 128, 256, 576 (similar
to BN in [10] and used as a base line); (2) ConvBN: convolu-
tional model with the input size equals to 24×24 and 7 hidden
layers: 22 × 22 × 64, 10 × 10 × 32, 8 × 8 × 16, 4 × 4 × 8,
8 × 8 × 16, 12 × 12 × 32 and 24 × 24. For both models as
activation functions we use ReLU and Tanh. In the LinearBN
model after each layer we apply 1D batch normalization and
2D batch normalization for the ConvBN. As the loss function
LA(.) the MSE is used. The training procedure is blind in the
sense that we don’t use any information about the principles
of the DataMatrix code generation.

4.2. Defender’s discrimination models

For ϕϑp training the triplets {xi,ypi , f
p
i }384i=1 were split into

training (100 images), validation (50 images) and test (234
images) sub-sets. In each sub-set the codes were split into
non-overlapping blocks of size 64× 64. The final size of the
training set is 3 600 sub-images, the validation set contains 1
800 sub-images and the test set consists of 8 424 sub-images.

1https://github.com/tarano/adversarial-detection-of-counterfeited-pgc

Train on \Test on SA LX CA HP
NN LinearBN

SA 0.14 1.47 0.20 0.56
LX 0.35 0.74 0.33 0.70
CA 0.17 1.21 0.13 0.50
HP 0.16 1.20 0.15 0.42

NN ConvBN
SA 0.12 1.16 0.24 0.62
LX 0.53 0.23 0.78 1.25
CA 0.15 0.79 0.09 0.41
HP 0.12 0.81 0.09 0.17

Table 3: DP1E: regeneration error (normalized Hamming
distance) between the original X and regenerated X̂ codes.

As a base line discrimination model we use (a) normal-
ized Hamming distance between the original binary codes and
scanned codes binarized via function Tϑp(.) with an optimal
thresholdϑp estimated on the training sub-set; (b) Person cor-
relation between the original binary codes and scanned codes.
Also we investigate two DNN-based discrimination models:

1. DNN-based 2 class classifier with 5 convolutional lay-
ers: 32×32×218, 16×16×256, 8×8×512, 4×4×1024,
1 × 1. We use 2D batch normalization after each layer ex-
cept the first and the last ones. As activation functions we use
LeakyRelu and Sigmoid for the last layer. As a loss one Binary
Cross Entropy is used. The training procedure formulated by
the equation (2) can be simplified as:

ϑ̂
p

= arg min
ϑp

− 1

M

M∑
i=1

l(bpi ) log
(
ϕϑp(bpi )

)
+
(
1− l(bpi )

)
log
(
1− ϕϑp(bpi )

)
,

(3)

where M = My +Mf is a size of training sub-set, bpi corre-
sponds to the ypi or fpi , l(.) produces the corresponding code
label.

2. GAN-like discriminator with a model’s architecture
identical to that used for DNN-based classifier discriminator.
Two Binary Cross Entropy functions are used for training:

ϑ̂
p

= arg min
ϑp

−
(

1

My

My∑
i=1

log
(
ϕϑp(ypi )

)
+

1

Mf

Mf∑
i=1

log
(
1− ϕϑp(fpi )

))
,

(4)

where l(ypi ) = 1 and l(fpi ) = 0.

5. RESULTS AND DISCUSSION

5.1. Regeneration results

The first set of our experiments aims at investigating the re-
generation accuracy of the attacker’s models. We train both



(a) SA. (b) LX. (c) CA. (d) HP.

Fig. 2: The ROC curves. Pd denotes to the probability of the correct detection and Pfa is the probability of false acceptance.

LinearNN and ConvNN regeneration models on the DP1C
and DP1E data sets and perform the cross-printer test. As a
regeneration accuracy measure we use normalized Hamming
distance between the original xi and regenerated codes x̂i.
The obtained results are given in the Tables 2 - 3. For both
data sets, the ConvNN gives smaller regeneration error. The
cross-printer test shows that the training and test for the same
printers are preferable and give smaller regeneration error.

From the Table 1 it can be seen that the LX printer has the
higher dot gain in contrast to the other used printers. Due to
the difference in the illumination between Epson and Cannon
scanners the regeneration error in DP1E data set is approxi-
mately in 2 times bigger than in DP1C data set.

To produce the fake codes fpi we print the estimated binary
codes x̂pi regenerated via ConvNN model (due to the smaller
Hamming distance error) on the corresponding printers.

5.2. Authentication results

To evaluate the authentication efficiency of the defender’s dis-
crimination models we compute the ROC curves similarly to
[10]. The obtained ROCs are shown in the Figure 2. It is
easy to see that the discriminator based on the normalized
Hamming distance (blue curves) doesn’t provide an efficient
authentication. The obtained curves are very close to the diag-
onal which means that the authentication is similar to a ran-
dom guess. In case of the LX the Pfa is very high that can
be explained by the big amount of errors even in the original
printed codes due to the big printing dot gain. For the dis-
criminator based on the Pearson correlation one can observe
similar behaviour. In case of the discriminator trained as a
classical 2 class DNN classifier the situation doesn’t improve.

The results obtained for the GAN-like discriminator show
completely different picture. In case of the CA and HP the
authentication ROCs show Pfa around 0.1 - 0.15 for the Pd
close to 1. In case of the SA the obtained ROCs are not so ideal
but much better than the previous results. In case of the LX
one can observe a big difference between the ROCs obtained
for DP1E and DP1C. This can be explained by the fact that in

the DP1E, due to the brighter illumination, the regeneration
error is bigger and the produced fakes have bigger amount of
errors. The recognition of such fakes is more efficient.

In summary, it should be noted that the attacker bene-
fits from the codes printed with intermediate printing qual-
ity where the accurate regeneration is still possible but after
printing the amount of errors are approximately on the same
level as in the original codes due to the small printing imper-
fections and artefacts. The defender in opposite benefits from
the either perfect printing quality or quite bad one. However,
both these cases can be dangerous for the defender. In the
first case, the attacker can estimate the original codes without
any mistakes and the defender would not be able to detect the
fakes under the assumption that the printing-scanning quality
of the attacker no less than the defender’s one. In the second
case, the amount of errors even in the original codes might be
too high to distinguish the fakes.

6. CONCLUSIONS

In this paper, we investigate the robustness to the machine
learning based copy attacks of the modern printable codes us-
ing DataMatrix modulation typical for many PGC designs.
We test proposed framework under assumption that the de-
fender has an advantage over the attacker by having an ac-
cess to the fake codes. We empirically proved a possibility
to accurate estimate the printed codes for high quality print-
ers even from relatively small training data sets. We demon-
strate that the high quality fakes is not the end of the story.
The defender can benefit from the achievements of the mod-
ern machine learning and can use them to train more efficient
discriminator.

For future work we aim at investigating the possibilities of
the modern mobile phones for the detection of fake codes and
to compare the abilities of machine learning approaches ver-
sus hand-crafted attacks. The impact of the number of train-
ing examples and training from the original digital templates
are also among our future priorities.
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