Learning Discrimination Specific, Self-Collaborative and Nonlinear Model

Dimche Kostadinov, **Behrooz Razeghi**, Slava Voloshynovskiy and Sohrab Ferdowsi

Stochastic Information Processing Group University of Geneva Switzerland

November 2018

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Outline

Introduction Sparse Models

Proposed Model

Overview Proposed Model Learning Algorithm

Evaluation of the Proposed Approach

Conclusions

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Backgrounds

- Introduction

Sparse Models

Synthesis Model for Sparse Representation

Synthesis model or regression model with sparsity regularized penalty synthesizes data sample $\mathbf{x} \in \mathbb{R}^N$ as an approximation by a sparse linear combination $\mathbf{y} \in \mathbb{R}^M$, $\|\mathbf{y}\|_0 \ll M$, of a few vectors $\mathbf{d}_m \in \mathbb{R}^N$, from a dictionary $\mathbf{D} = [\mathbf{d}_1, ..., \mathbf{d}_M]$, i.e., $\mathbf{x} = \mathbf{D}\mathbf{y} + \mathbf{z}$.

- Introduction

Sparse Models

Analysis Model for Sparse Representation

Analysis model uses a dictionary $\Phi \in \mathbb{R}^{M \times N}$ with M > N to analyze the data sample $\mathbf{x} \in \mathbb{R}^N$. This model assumes that the product of Φ and \mathbf{x} is sparse, i.e., $\Phi \mathbf{x} = \mathbf{y}$ with $\|\mathbf{y}\|_0 = M - s$, $0 \le s \le M$.

Introduction

Sparse Models

Transform Model for Sparse Representation

Transform model assumes that the data sample $\mathbf{x} \in \mathbb{R}^N$ is approximately sparsifiable under a linear transform $\mathbf{A} \in \mathbb{R}^{M \times N}$, i.e., $\mathbf{A}\mathbf{x} = \mathbf{y} + \mathbf{z}$, where $\mathbf{y} = \mathcal{T}(\mathbf{x})$, $\|\mathbf{y}\|_0 \ll M$ and $\mathbf{z} \in \mathbb{R}^M$ is an error vector in transform domain.

- Introduction

Sparse Models

Transform Model for Sparse Representation

► Given A, and sparsity s, transform sparse coding is:

$$\widehat{\mathbf{y}} = \arg\min_{\mathbf{y}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2, \text{ s.t. } \|\mathbf{y}\|_0 \le s$$

- ➤ ŷ computed exactly by a thresholding Ax to the s largest magnitude elements ⇒ Sparse coding is cheap!
- Signal recovered as $A^{\dagger}y$
- **z** is error term in the **transform domain**

- Introduction

Sparse Models

Unstructured Transform Learning

$$\left(\widehat{\mathbf{A}}, \widehat{\mathbf{Y}} \right) = \arg \min_{\mathbf{A}, \mathbf{Y}} \underbrace{ \| \widehat{\mathbf{AX}} - \mathbf{Y} \|_{F}^{2}}_{\text{s.t.} \| \mathbf{y}_{k} \|_{0} \leq s, \forall k } \overset{\text{Sparsification Error}}{\underset{\mathbf{X}, \mathbf{Y}}{\underbrace{ \| \widehat{\mathbf{A}} \mathbf{X} - \mathbf{Y} \|_{F}^{2} }} + \underbrace{ \widehat{\mathbf{\Omega} (\mathbf{A})}_{\mathbf{\Omega} (\mathbf{A})} ,$$

- $\mathbf{X} = [\mathbf{x}_1 \mid \mathbf{x}_2 \mid ... \mid \mathbf{x}_K] \in \mathbb{R}^{N \times K}$: matrix of training signals
- $\mathbf{Y} = [\mathbf{y}_1 \mid \mathbf{y}_2 \mid ... \mid \mathbf{y}_K] \in \mathbb{R}^{M \times K}$: matrix of sparse codes for \mathbf{X}
- Sparsification Error measures deviation of data in a transform domain
- Ω(A) penalizes the information loss in order to avoid trivially unwanted matrices, e.g., matrices that have repeated or zero rows.

Overview

Approach Overview

ICBK 2018

Overview

General Block Diagram

10/27

Overview

General Block Diagram

- Overview

General Block Diagram

三日 のへの

< E

Overview

General Block Diagram

Proposed Model

Joint Modeling with Collaboration

• $p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}, \mathbf{A}) = p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) p(\mathbf{A})$

• with $p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) = p(\mathbf{x}_{c,k} | \mathbf{Y}_{\{c,k\}}, \mathbf{A}) \qquad \underbrace{p(\boldsymbol{\theta}, \mathbf{Y}_{\{c,k\}})}_{(c,k)}$

Proposed Model

Joint Modeling with Collaboration

• and $p(\mathbf{x}_{c,k}|\mathbf{Y}_{\{c,k\}},\mathbf{A})$

•
$$p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}, \mathbf{A}) = p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) p(\mathbf{A})$$

• with
$$p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) = p(\mathbf{x}_{c,k} | \mathbf{Y}_{\{c,k\}}, \mathbf{A})$$

 $p(\boldsymbol{\theta}, \mathbf{Y}_{\{c,k\}})$

$$\propto \prod_{l=1}^{L} \exp\left(-\frac{1}{\beta_0} \left(\mathbf{z}_{l,\{c,k\}}^T \mathbf{z}_{l,\{c,k\}} + \overbrace{f_{TSC}\left(\mathbf{z}_{l,\{c,k\}}, g_A(\mathbf{Z}_{\{c,k\}\setminus l})\right)}^{TSC}\right)\right)$$

Proposed Model

Joint Modeling with Collaboration

•
$$p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}, \mathbf{A}) = p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) p(\mathbf{A})$$

• with
$$p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) = p(\mathbf{x}_{c,k} | \mathbf{Y}_{\{c,k\}}, \mathbf{A})$$

$$\underbrace{p(\boldsymbol{\theta},\mathbf{Y}_{\{c,k\}})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ののの

• and
$$p(\mathbf{x}_{c,k}|\mathbf{Y}_{\{c,k\}},\mathbf{A})$$

collaboration corrective discriminative prior nonlinear transform error

 $\propto \prod_{l=1}^{L} \exp\left(-\frac{1}{\beta_0} \left(\mathbf{z}_{l,\{c,k\}}^T \mathbf{z}_{l,\{c,k\}} + \overbrace{f_{TSC}(\mathbf{z}_{l,\{c,k\}}, g_A(\mathbf{Z}_{\{c,k\}\setminus l}))}^{\text{self collaborative component}}\right)\right)$

 $\blacktriangleright \mathbf{z}_{l,\{c,k\}} = \mathbf{A}_l \mathbf{x}_{c,k} - \mathbf{y}_{l,\{c,k\}}$

- ► $f_{TSC}(.) : \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$: Target Specific Collaboration Function
- ▶ $g_A(.) : \mathbb{R}^M \times \cdots \times \mathbb{R}^M \to \mathbb{R}$: Collaboration Aggregation Function

Proposed Model

Joint Modeling with Collaboration

•
$$p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}, \mathbf{A}) = p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) p(\mathbf{A})$$

• with $p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) = p(\mathbf{x}_{c,k} | \mathbf{Y}_{\{c,k\}}, \mathbf{A})$

$$\underbrace{p(\boldsymbol{\theta},\mathbf{Y}_{\{c,k\}})}$$

• and
$$p(\mathbf{x}_{c,k}|\mathbf{Y}_{\{c,k\}},\mathbf{A})$$

т

collaboration corrective discriminative prior nonlinear transform error

self collaborative component

$$\propto \prod_{l=1}^{L} \exp\left(-\frac{1}{\beta_0} \left(\mathbf{z}_{l,\{c,k\}}^T \mathbf{z}_{l,\{c,k\}} + \overbrace{f_{TSC}\left(\mathbf{z}_{l,\{c,k\}}, g_A(\mathbf{Z}_{\{c,k\}\setminus l})\right)}^{L}\right)\right)$$

z_{l,{c,k}} = A_lx_{c,k} - y_{l,{c,k}}
 f_{TSC}(.): ℝ^M×ℝ^M → ℝ: Target Specific Collaboration Function
 g_A(.): ℝ^M×···×ℝ^M → ℝ: Collaboration Aggregation Function
 p(θ, Y_{c,k}) = ∏_{l=1}^L p(θ_l|y_{l,{c,k}})p(y_{l,{c,k}})

Proposed Model

Joint Modeling with Collaboration

$$\bullet \quad p(\mathbf{x}_{c,k},\mathbf{Y}_{\{c,k\}},\boldsymbol{\theta},\mathbf{A}) = p(\mathbf{x}_{c,k},\mathbf{Y}_{\{c,k\}},\boldsymbol{\theta}|\mathbf{A})p(\mathbf{A})$$

• with $p(\mathbf{x}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{A}) = p(\mathbf{x}_{c,k} | \mathbf{Y}_{\{c,k\}}, \mathbf{A})$

$$\underbrace{p(\boldsymbol{\theta},\mathbf{Y}_{\{c,k\}})}$$

• and
$$p(\mathbf{x}_{c,k}|\mathbf{Y}_{\{c,k\}},\mathbf{A})$$

т

collaboration corrective discriminative prior nonlinear transform error

self collaborative component

$$\propto \prod_{l=1}^{L} \exp\left(-\frac{1}{\beta_0} \left(\mathbf{z}_{l,\{c,k\}}^T \mathbf{z}_{l,\{c,k\}} + \overbrace{f_{TSC}\left(\mathbf{z}_{l,\{c,k\}}, g_A(\mathbf{Z}_{\{c,k\}\setminus l})\right)}^{L}\right)\right)$$

►
$$\mathbf{z}_{l,\{c,k\}} = \mathbf{A}_{l}\mathbf{x}_{c,k} - \mathbf{y}_{l,\{c,k\}}$$

► $f_{TSC}(.) : \mathbb{R}^{M} \times \mathbb{R}^{M} \to \mathbb{R}$: Target Specific Collaboration Function
► $g_{A}(.) : \mathbb{R}^{M} \times \cdots \times \mathbb{R}^{M} \to \mathbb{R}$: Collaboration Aggregation Function
• $p(\boldsymbol{\theta}, \mathbf{Y}_{\{c,k\}}) = \prod_{l=1}^{L} p(\boldsymbol{\theta}_{l} | \mathbf{y}_{l,\{c,k\}}) p(\mathbf{y}_{l,\{c,k\}})$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Proposed Model

Self-Collaboration Discriminative Prior and its Measure

Unsupervised Discriminative Prior:

$$p(\boldsymbol{\theta}, \mathbf{Y}_{\{c,k\}}) = \prod_{l} p(\boldsymbol{\theta}_{l} | \mathbf{y}_{l,\{c,k\}}) p(\mathbf{y}_{l,\{c,k\}})$$

where

Dissimilarity Parameters

•
$$\boldsymbol{\theta} = \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_L\}, \ \boldsymbol{\theta}_l = \{\boldsymbol{\theta}_{l,1}, \boldsymbol{\theta}_{l,2}\} = \{\{\overline{\{\boldsymbol{\tau}_{l,1}, ..., \boldsymbol{\tau}_{l,C1}\}}, \{\boldsymbol{\nu}_{l,1}, ..., \boldsymbol{\nu}_{l,C2}\}\}$$

Similarity Parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ののの

•
$$p(\boldsymbol{\theta}_{l}|\mathbf{y}_{l,\{c,k\}}) \propto \exp(-\frac{1}{\beta_{I}} \widehat{l_{I}(\boldsymbol{\theta}_{l},\mathbf{y}_{l,\{c,k\}})})$$

• $p(\mathbf{y}_{l,\{c,k\}}) \propto \exp(-\frac{\|\mathbf{y}_{l,\{c,k\}}\|_{1}}{\beta_{l,1}}) \Rightarrow \text{sparsity inducing prior}$
• $l_{I}(\boldsymbol{\theta}_{l},\mathbf{y}_{l,\{c,k\}}) = \min_{1 \leq c_{1} \leq C_{1}} \max_{1 \leq c_{2} \leq C_{2}} \left(\operatorname{Sim}(\mathbf{y}_{l,\{c,k\}},\boldsymbol{\tau}_{l,c_{1}}) \right)$

$$+\mathrm{Sim}(\mathbf{y}_{l,\{c,k\}},\boldsymbol{\nu}_{l,c2})+\mathrm{Stg}(\mathbf{y}_{l,\{c,k\}},\boldsymbol{\tau}_{l,c1})\Big)$$

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland **ICBK 2018**

Proposed Model

Similarity and Strength Measures

$$l_{I}(\boldsymbol{\theta}_{l}, \mathbf{y}_{l, \{c, k\}}) = \min_{1 \leq c1 \leq C1} \max_{1 \leq c2 \leq C2} \left(\operatorname{Sim}(\mathbf{y}_{l, \{c, k\}}, \boldsymbol{\tau}_{l, c1}) + \operatorname{Sim}(\mathbf{y}_{l, \{c, k\}}, \boldsymbol{\nu}_{l, c2}) + \operatorname{Stg}(\mathbf{y}_{l, \{c, k\}}, \boldsymbol{\tau}_{l, c1}) \right)$$

$$\begin{aligned} &\operatorname{Sim}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) \ = \ \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \\ &\operatorname{Stg}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) \ = \ \|\mathbf{y}_{l,\{c,k\}} \odot \mathbf{y}_{l,\{c1,k1\}}\|_{2}^{2} \end{aligned}$$

where

▶ ⊙ denotes Hadamard product

$$\mathbf{y}_{l,\{c,k\}} = \mathbf{y}_{l,\{c,k\}}^{+} - \mathbf{y}_{l,\{c,k\}}^{-} \Rightarrow \mathbf{y}_{l,\{c,k\}}^{+} = \max(\mathbf{y}_{l,\{c,k\}}, \mathbf{0}) \\ \mathbf{y}_{l,\{c,k\}}^{-} = \max(-\mathbf{y}_{l,\{c,k\}}, \mathbf{0})$$

•
$$\mathbf{y}_{l,\{c1,k1\}} = \mathbf{y}_{l,\{c1,k1\}}^+ - \mathbf{y}_{l,\{c1,k1\}}^-$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Illustration of Similarity and Dissimilarity Measures

$$\begin{aligned} \operatorname{Sim}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \\ \operatorname{Dis}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \end{aligned}$$

14/27

Illustration of Similarity and Dissimilarity Measures

$$\begin{aligned} \operatorname{Sim}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \\ \operatorname{Dis}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \end{aligned}$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Illustration of Similarity and Dissimilarity Measures

$$\begin{aligned} \operatorname{Sim}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \\ \operatorname{Dis}(\mathbf{y}_{l,\{c,k\}},\mathbf{y}_{l,\{c1,k1\}}) &= \|\mathbf{y}_{l,\{c,k\}}^{+} \odot \mathbf{y}_{l,\{c1,k1\}}^{-}\|_{1} + \|\mathbf{y}_{l,\{c,k\}}^{-} \odot \mathbf{y}_{l,\{c1,k1\}}^{+}\|_{1} \end{aligned}$$

14/27

Proposed Model

Problem Formulation

Nonlinear Transform Error $\min_{\mathbf{Y},\boldsymbol{\theta},\mathbf{A}}\sum_{l=1}^{L} \left(\frac{1}{2} \|\mathbf{A}_{l}\mathbf{X} - \mathbf{Y}_{l}\|_{F}^{2} \right)$ $+\sum_{l=1}^{C}\sum_{l=1}^{K}\left(\overbrace{\lambda_{l,I}l_{I}(\boldsymbol{\theta}_{l},\mathbf{y}_{l,\{c,k\}})}^{\text{Discrimination Constraint}}+\overbrace{\lambda_{l,1}\|\mathbf{y}_{l,\{c,k\}}\|_{1}}^{\text{Sparsity Constraint}}\right)$ $c=1 \ k=1$ Target Specific Collaboration Error Linear Map Constraint + $\frac{1}{L}$ Tr{ $(\mathbf{A}_{l}\mathbf{X} - \mathbf{Y}_{l})^{T}} \sum_{l1 \in \{1,...,L\} \setminus l} (\mathbf{A}_{l1}\mathbf{X} - \mathbf{Y}_{l1})$ } + $\overline{\Omega(\mathbf{A}_{l})}$

$$\blacktriangleright \mathbf{Y} = [\mathbf{Y}_1, ..., \mathbf{Y}_L], \mathbf{A} = [\mathbf{A}_1, ..., \mathbf{A}_L], \boldsymbol{\theta} = \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_L\}$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

15/27

- ▲母 ▶ ▲ ヨ ▶ ▲目目 - シ۹ №

Learning Algorithm

Learning Algorithm

We propose an iterative, alternating algorithm with three distinct stages:

- representation y_{l,{c,k}} estimation with discriminative assignment
- discrimination parameters' heta estimation
- linear map A_l estimation

We show that the problems at all stages have an **exact** or **approximate closed-form solutions**.

Learning Algorithm

Learning Algorithm

Stage 1: Representation Estimation with Discriminative Assignment

- Given data samples \mathbf{X} and current estimate \mathbf{A}_l
- Discriminative representation estimation problem per Y_l is decoupled and is formulated as:

$$\begin{split} \min_{\mathbf{Y}_{l}} \|\mathbf{A}_{l}\mathbf{X} - \mathbf{Y}_{l}\|_{F}^{2} + \frac{1}{L} \mathrm{Tr}\{\mathbf{Y}_{l}^{T}\sum_{l1\neq l}(\mathbf{Y}_{l1} - \mathbf{A}_{l1}\mathbf{X}))\} \\ + \sum_{c=1}^{C}\sum_{k=1}^{K} \left(\lambda_{l,I}l_{I}(\boldsymbol{\theta}_{l}, \mathbf{y}_{l,\{c,k\}}) + \lambda_{l,1}\|\mathbf{y}_{l,\{c,k\}}\|_{1}\right) \end{split}$$

Learning Algorithm

Learning Algorithm

Stage 1: Representation Estimation with Discriminative Assignment

$$\min_{\mathbf{Y}_{l}} \|\mathbf{A}_{l}\mathbf{X} - \mathbf{Y}_{l}\|_{F}^{2} + \frac{1}{L} \operatorname{Tr} \{\mathbf{Y}_{l}^{T} \sum_{l1 \neq l} (\mathbf{Y}_{l1} - \mathbf{A}_{l1}\mathbf{X}))\} \\ + \sum_{c} \sum_{k} \left(\lambda_{l,l} l_{I}(\boldsymbol{\theta}_{l}, \mathbf{y}_{l,\{c,k\}}) + \lambda_{l,1} \|\mathbf{y}_{l,\{c,k\}}\|_{1} \right)$$

Nonlinear Transform Estimation closed-form:

$$\mathbf{y}|_{\{c1,c2\}} = \operatorname{sign}(\mathbf{b}) \odot \max(|\mathbf{b}| - \mathbf{p}, \mathbf{0}) \oslash \mathbf{n},$$

- Discriminative Assignment:
 - Part 1: Score Evaluation

 $l_{I}: s_{I}(c1, c2) = \sin(\mathbf{y}|_{\{c1, c2\}}, \boldsymbol{\tau}_{l, c1}) - \sin(\mathbf{y}|_{\{c1, c2\}}, \boldsymbol{\nu}_{l, c2}) + \operatorname{stg}(\mathbf{y}|_{\{c1, c2\}}, \boldsymbol{\tau}_{l, c1})$

Part 2: Class Assignment

$$\{\hat{c1}, \hat{c2}\} = \arg\min_{c1, c2} s_I(c1, c2), \quad \mathbf{y}_{l, \{c,k\}} = \mathbf{y}|_{\{\hat{c1}, \hat{c2}\}}$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Learning Algorithm

Learning Algorithm

Stage 2: Discrimination Parameters Estimation

- ► Given the estimated representations $\mathbf{y}_{l,\{c,k\}}$, we update the parameters $\boldsymbol{\theta}_l, \forall l \in \{1, ..., L\}$.
- ► Note that for each y_{l,{c,k}} the corresponding τ_{l,c1} and ν_{l,c2} are known from the previous stage.
- We formulate the problem associated to the update of single $au_{l,c1}$ as follows:

$$\boldsymbol{\tau}_{l,c1} = \arg\min_{\boldsymbol{\tau}_{l,c1}} \frac{1}{2} \|\boldsymbol{\tau}_{l,c1}^{t-1} - \boldsymbol{\tau}_{l,c1}\|_{2}^{2} + \\ \lambda_{l,0} \sum_{c1} (\operatorname{Stg}(\mathbf{y}|_{\{c1,c2\}}, \boldsymbol{\tau}_{l,c1}) + \operatorname{Sim}(\mathbf{y}|_{\{c1,c2\}}, \boldsymbol{\tau}_{l,c1})).$$

• Analogous formulation for updating per single $\nu_{l,c2}$

Learning Algorithm

Learning Algorithm Stage 3: Linear Map Estimation

- ▶ Given: data samples X, all $Y = [Y_1, ..., Y_L]$, and all A except A_l
- ► Denote: $\mathbf{W}_l = \mathbf{Y}_l \sum_{l1 \in \{1,...,L\} \setminus l} (\mathbf{A}_{l1}\mathbf{X} \mathbf{Y}_{l1})$

► The problem related to the estimation of the linear map A_l, reduces to:

$$\begin{split} \min_{\mathbf{A}_l} \frac{1}{2} \|\mathbf{A}_l \mathbf{X} - \mathbf{W}_l\|_2^2 + \frac{\lambda_{l,2}}{2} \|\mathbf{A}_l\|_F^2 \\ + \frac{\lambda_{l,3}}{2} \|\mathbf{A}_l \mathbf{A}_l^T - \mathbf{I}\|_F^2 - \lambda_{l,4} \log |\det \mathbf{A}_l^T \mathbf{A}_l| \end{split}$$

We use an approximate closed-form solution

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Quantifying a Discrimination Quality

- Transform parameter set: $\mathcal{P}_t = \{\mathbf{A} = [\mathbf{A}_1, ..., \mathbf{A}_L]^T \in \Re^{M \times N}, \tau \mathbf{1} \in \Re^M \}$
- ▶ Expected similarity of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T, ..., \mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the different classes $c1 \neq c$:

$$D_{\ell_1}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{c1\neq c} \sum_{k=1}^K \sum_{k1\neq k} (\|\mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c1,k1}^+\|_1 + \|\mathbf{u}_{c,k}^- \odot \mathbf{u}_{c1,k1}^-\|_1)$$

• Expected similarity using the positive and negative components of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T,...,\mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the same classes c:

$$D_{\ell_1,c}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{k=1}^K \sum_{k_1 \neq k} \left(\|\mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c,k1}^+\|_1 + \|\mathbf{u}_{c,k}^- \odot \mathbf{u}_{c,k1}^-\|_1 \right)$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Quantifying a Discrimination Quality

- ▶ Transform parameter set: $\mathcal{P}_t = \{\mathbf{A} = [\mathbf{A}_1, ..., \mathbf{A}_L]^T \in \Re^{M \times N}, \tau \mathbf{1} \in \Re^M\}$
- ► Expected similarity of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T, ..., \mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the different classes $c1 \neq c$:

$$D_{\ell_1}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{c_1 \neq c} \sum_{k=1}^K \sum_{k_1 \neq k} (\|\mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c_1,k_1}^+\|_1 + \|\mathbf{u}_{c,k}^- \odot \mathbf{u}_{c_1,k_1}^-\|_1)$$

• Expected similarity using the positive and negative components of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T,...,\mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the same classes c:

$$D_{\ell_1,c}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{k=1}^K \sum_{k1 \neq k} (\|\mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c,k1}^+\|_1 + \|\mathbf{u}_{c,k}^- \odot \mathbf{u}_{c,k1}^-\|_1)$$

Discrimination Power for any pair of labels and dataset $\mathbf{X} \in \Re^{M \times CK}$:

$$\mathcal{I}^{t} = \log(D_{\ell_{1},c}^{\mathcal{P}_{t}}(\mathbf{X})) - \log(D_{\ell_{1}}^{\mathcal{P}_{t}}(\mathbf{X}) + \epsilon)$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Quantifying a Discrimination Quality

- ▶ Transform parameter set: $\mathcal{P}_t = \{\mathbf{A} = [\mathbf{A}_1, ..., \mathbf{A}_L]^T \in \Re^{M \times N}, \tau \mathbf{1} \in \Re^M\}$
- ► Expected similarity of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T, ..., \mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the different classes $c1 \neq c$:

$$D_{\ell_1}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{c1\neq c} \sum_{k=1}^K \sum_{k1\neq k} (\|\mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c1,k1}^+\|_1 + \|\mathbf{u}_{c,k}^- \odot \mathbf{u}_{c1,k1}^-\|_1)$$

• Expected similarity using the positive and negative components of all $\mathbf{u}_{c,k} = [\mathbf{y}_{1,\{c,k\}}^T, ..., \mathbf{y}_{L,\{c,k\}}^T]^T$ across all the transform representations \mathbf{Y}_c that come from the same classes c:

$$D_{\ell_1,c}^{\mathcal{P}_t}(\mathbf{X}) = \sum_{c=1}^C \sum_{k=1}^K \sum_{k_1 \neq k} \left(\| \mathbf{u}_{c,k}^+ \odot \mathbf{u}_{c,k1}^+ \|_1 + \| \mathbf{u}_{c,k}^- \odot \mathbf{u}_{c,k1}^- \|_1 \right)$$

• Discrimination Power for any pair of labels and dataset $\mathbf{X} \in \Re^{M \times CK}$:

$$\mathcal{I}^{t} = \log(D_{\ell_{1},c}^{\mathcal{P}_{t}}(\mathbf{X})) - \log(D_{\ell_{1}}^{\mathcal{P}_{t}}(\mathbf{X}) + \epsilon)$$

ICBK 2018 Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Mutual Coherence & Condition Number

	AR	YALE B	COIL20	NORB
$\frac{1}{L}\sum_{l}\mu(\mathbf{A}_{l})$	2.1e-4	1e-4	1.9e-4	3.1e-4
$\frac{1}{L} \sum_{l} C_n(\mathbf{A}_l)$	16.1	26.3	18	19.1

Table: The cumulative expected mutual coherence $\frac{1}{L}\sum_{l}\mu(\mathbf{A}_{l})$ and the cumulative conditioning number $\frac{1}{L}\sum_{l}C_{n}(\mathbf{A}_{l})$ for the linear maps $\mathbf{A}_{l}, l \in \{1, ..., 6\}$ with dimensions $6570 \times N$, where N is the dimensionality of the input data

Discrimination Power Evaluation

	AR	YALE B	COIL20	NORB
\mathcal{I}^o	2.13	1.45	1.18	0.41
\mathcal{I}^R	2.41	1.66	1.61	0.40
\mathcal{I}^S	2.71	1.76	1.92	0.40
\mathcal{I}^*	3.04	2.14	2.63	0.42

Table: The discrimination power in the original domain, after random transform, after learned sparsifying transform and after learned self-collaborating target specific nonlinear transform with dimension M = 6570.

Recognition Evaluation

	AR	YALE B	COIL20	NORB
original domain $[\%]$	96.1	95.4	96.8	97
proposed $[\%]$	97.1	97.1	97.8	96.8

Table: The recognition results on the databases AR, YALE B, COIL20 and NORB, using k-NN on the sparse representations using our model with dimension M = 6570.

Discrimination Power and Recognition Comparison

	YALE B	MNIST	YA	LE B	Μ	NIST
	${\mathcal I}$	\mathcal{I}		Acc. [%]]	Acc. [%]
dlsi	0.71	0.67		96.5		98.74
fddl	0.87	0.63		97.5		96.31
copar	0.57	0.54		98.3		96.41
lrsdl	0.42	0.40		98.7		—
*	0.90	0.81	k- nn	97.1	k- nn	97.32
*	0.90	0.81	l- svm	98.8	l- svm	98.45
	a)			b)		c)

Table: a) The discrimination power for the methods dlsi, fddl, copar and lrsdl and the proposed method *, b), c) The recognition results on the Extended Yale B and MNIST

Recognition Accuracy Comparison with State-of-the-Art

MNIS	ЯΤ	F-MNI	ST	SVHN	
Method	Acc.	Method	Acc.	Method	Acc.
lif-cnn [1]	98.37	log-reg [5]	84.00	ssae [7]	89.70
s-cw-a [2]	98.62	rf-c [5]	87.70	c-km [7]	90.60
reg-1 [3]	99.08	svc [5]	89.98	s-cw-a [2]	93.10
f-max [4]	99.65	cnn [6]	92.10	tma [8]	98.31
* k-nn	97.11	* k- nn	88.10	* k- nn	86.41
* l-svm	99.10	* l - svm	92.22	* l -svm	90.28

Table: Recognition accuracy comparison between sota and 1) k Nearest Neighbor (k-nn) search and 2) linear SVM (l-svm) that use the Sparsifying Nonlinear Transform (sNT) representations from our model on extracted HOG image features. We use our algorithm to learn the model on the HOG features. Then we get the sNT representations with dimensionality 9800 for the respective training and test sets. Considering the obtained result for database SVHN, we note that the unlabeled training data from the respective database was not used during the learning of the corresponding model.

Conclusions:

- We introduced a novel collaboration structured model with minimum information loss, collaboration corrective and discriminative priors for joint learning of multiple nonlinear transforms.
- An efficient solution was proposed by an iterative, coordinate descend algorithm.
- The introduced discrimination measure and the recognition accuracy on the used databases showed promising performance and advantages w.r.t. state-of-the-art methods.

References

- Eric Hunsberger and Chris Eliasmith, "Spiking deep networks with LIF neurons", 2015.
- [2] Alireza Makhzani and Brendan J Frey. "Winner-take-all autoencoders", In NIPS. 2015.
- [3] Priyadarshini Panda and Kaushik Roy. "Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition", CoRR, 2016.
- [4] Benjamin Graham. "Fractional max-pooling", CoRR, 2014.
- [5] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion- mnist: a novel image dataset for benchmarking machine learning algorithms. CoRR, 2017.
- [6] Maheshkumar H. Kolekar Shobhit Bhatnagar, Deepan- way Ghosal. Classification of fashion article images using convolutional neural networks. In IEEE ICIIP, 2017.
- [7] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS Wor. UFL, 2011.
- [8] Chen-Yu Lee, Patrick W. Gallagher, and Zhuowen Tu. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In 19th ICAIS, 2016.