Supervised Joint Nonlinear Transform Learning with Discriminative-Ambiguous Prior for Generic Privacy-Preserved Features

Dimche Kostadinov, Behrooz Razeghi, Shideh Rezaeifar and Slava Voloshynovskiy

Stochastic Information Processing Group CVML, University of Geneva Switzerland

March 21th, 2019

Dimche Kostadinov, et al.

Outline

Introduction

Related Work

Proposed Model

Privacy-preserving content search/identification/recognition

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

3 / 25

Privacy-preserving content search/identification/recognition

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

Big Data & Distributed Applications Services on outsourced cloud-based systems

Privacy-preserving content search/identification/recognition

Problem Formulation

Objectives of parties

- Data owners wish to share their data with "authorized" data users
- Data users seek some utility based on the query
- Server (service provider) is honest-but-curious

4 / 25

4 / 25

Problem Formulation

Objectives of parties

- Data owners wish to share their data with "authorized" data users
- Data users seek some utility based on the query
- Server (service provider) is honest-but-curious

Goal of privacy protection in outsourced services

Outline

Introduction

Related Work

Proposed Model

Dimche Kostadinov, et al.

Privacy-Protected Template Generation using Sparsification with Ambiguization

Contribution: Model a generalized randomization technique with an information loss prior for privacy protection mechanisms

Three Fundamental Flements

- Sparsification
- Ambiguization
- Privacy-Preserving Search

Advantages:

- Fast search / memory efficient
- Tunable reconstruction/recognition accuracy at server side
- Limit inference of the public data even for the authorized data users
- Server cannot reveal a structure of the database

Fundamental Elements: Sparsification Main Idea

Fundamental Elements: Ambiguization Main Idea • Ambiguization addition of noisy samples LL ▶ $\mathbf{u}(m) \in \{-1, 0, +1\}^L$ Public Domain $||\mathbf{u}(m)||_0 \le S_x$ ▶ u(m) ⊕ n

- ▶ Prevent reconstruction from $\mathbf{u}(m) \bigoplus \mathbf{n}$ and from probe \mathbf{y}
- \blacktriangleright Preclude server from discovering the structure of the database \mathcal{A}

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 8 / 25

Fundamental Elements: Privacy Preserving Search Main Idea: User sends only positions of interest

Fundamental Elements: Privacy Preserving Search

Main Idea: User sends only positions of interest

Dimche Kostadinov, et al.

Fundamental Elements: Privacy Preserving Search

Main Idea: User sends only positions of interest

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 9 / 25

Outline

Introduction

Related Work

Proposed Model

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 10 / 25

- Overview

Proposed Model

Objective:

- Learn the discriminative and ambiguous representations with
 - Minimum information loss
 - Supervised discrimination and ambiguization prior
- Obtain the privacy-protected representation by imposing randomness to the learned representations

Model Elements

Joint Nonlinear Transform Model

$$p(\mathbf{Y}_{\{c,k\}}, \mathbf{z}_{c,k} | \mathbf{x}_{c,k}, \mathbf{W}) = \int_{\boldsymbol{\theta}} p(\mathbf{Y}_{\{c,k\}}, \mathbf{z}_{c,k}, \boldsymbol{\theta} | \mathbf{x}_{c,k}, \mathbf{W}) \, \mathrm{d}\boldsymbol{\theta}$$

- $\mathbf{x}_{c,k} \in \Re^N$: input data
- $\mathbf{z}_{c,k} \in \Re^M$: public (protected) representation
- $\mathbf{Y}_{\{c,k\}} = [\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}] \in \Re^{M \times 2}$: discriminative and ambiguous representations
- $\boldsymbol{\theta} = \{ \boldsymbol{\theta}_d, \boldsymbol{\theta}_a \}$: model parameters
- $\mathbf{W} = [\mathbf{W}_d, \mathbf{W}_a], \mathbf{W}_d \in \Re^{M \times N}, \mathbf{W}_a \in \Re^{M \times N}$: linear transforms

Model Assumptions:

•
$$p(\mathbf{x}_{c,k}, \mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{W}) = p(\mathbf{x}_{c,k} | \mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}, \mathbf{W}) p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{W})$$

•
$$p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta} | \mathbf{W}) = p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta})$$

Dimche Kostadinov, et al.

Model Elements

$$p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}) = \underbrace{p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})}_{\text{conditional privacy-utility prior}} \underbrace{p(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}})}_{\text{discriminative prior ambiguous prior}} \underbrace{p(\boldsymbol{\theta}_{a}, \mathbf{y}_{a,\{c,k\}})}_{\text{discriminative prior ambiguous prior}}$$

$$p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})$$

$$\propto \exp(-\frac{1}{\beta_{Z}} \| \mathbf{z}_{c,k}, -\mathbf{y}_{d,\{c,k\}} - \mathbf{y}_{a,\{c,k\}} \|_{2}^{2}) \exp(-\underbrace{L_{p-u}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}))}_{\text{privacy-utility measure}})$$

13 / 25

Proposed Model

Model Elements

$$p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}) = \underbrace{p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})}_{\text{conditional privacy-utility prior}} \underbrace{p(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}})}_{\text{discriminative prior ambiguous prior}} \underbrace{p(\boldsymbol{\theta}_{a}, \mathbf{y}_{a,\{c,k\}})}_{\text{discriminative prior ambiguous prior}}$$

$$p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})$$

$$\propto \exp(-\frac{1}{\beta_{Z}} \| \mathbf{z}_{c,k}, -\mathbf{y}_{d,\{c,k\}} - \mathbf{y}_{a,\{c,k\}} \|_{2}^{2}) \exp(-\underbrace{L_{p-u}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}})}_{\text{privacy-utility measure}})$$

• $p(\boldsymbol{\theta}_d, \mathbf{y}_{d,\{c,k\}}) = p(\boldsymbol{\theta}_d | \mathbf{y}_{d,\{c,k\}}) p(\mathbf{y}_{d,\{c,k\}}) \propto \exp(-\underline{L_d(\boldsymbol{\theta}_d, \mathbf{y}_{d,\{c,k\}})}) p(\mathbf{y}_{d,\{c,k\}})$

discriminative measure

Model Elements

$$p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}) = \underbrace{p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})}_{\text{conditional privacy-utility prior}} \underbrace{p(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}})}_{\text{discriminative prior ambiguous prior}} \underbrace{p(\boldsymbol{\theta}_{a}, \mathbf{y}_{a,\{c,k\}})}_{\text{discriminative prior ambiguous prior}}$$

$$p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})$$

$$\propto \exp(-\frac{1}{\beta_{Z}} \| \mathbf{z}_{c,k}, -\mathbf{y}_{d,\{c,k\}} - \mathbf{y}_{a,\{c,k\}} \|_{2}^{2}) \exp(-\underbrace{L_{p-u}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}))}_{\text{privacy-utility measure}})$$

•
$$p(\boldsymbol{\theta}_d, \mathbf{y}_{d,\{c,k\}}) = p(\boldsymbol{\theta}_d | \mathbf{y}_{d,\{c,k\}}) p(\mathbf{y}_{d,\{c,k\}}) \propto \exp(-\underline{L_d(\boldsymbol{\theta}_d, \mathbf{y}_{d,\{c,k\}})}) p(\mathbf{y}_{d,\{c,k\}})$$

discriminative measure

sparsity prior

•
$$p(\boldsymbol{\theta}_a, \mathbf{y}_{a,\{c,k\}}) = p(\boldsymbol{\theta}_a | \mathbf{y}_{a,\{c,k\}}) p(\mathbf{y}_{a,\{c,k\}}) \propto \exp(-\underbrace{L_a(\boldsymbol{\theta}_a, \mathbf{y}_{a,\{c,k\}})}_{(\mathbf{y}_a,\{c,k\})}) p(\mathbf{y}_{a,\{c,k\}})$$

ambiguous measure

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 13 / 25

Model Elements

$$p(\mathbf{z}_{c,k}, \mathbf{Y}_{\{c,k\}}, \boldsymbol{\theta}) = \underbrace{p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})}_{\text{conditional privacy-utility prior}} \underbrace{p(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}})}_{\text{discriminative prior ambiguous prior}} \underbrace{p(\boldsymbol{\theta}_{a}, \mathbf{y}_{a,\{c,k\}})}_{\text{obscriminative prior ambiguous prior}}$$

$$p(\mathbf{z}_{c,k} | \mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{\theta})$$

$$\propto \exp(-\frac{1}{\beta_{Z}} \| \mathbf{z}_{c,k}, -\mathbf{y}_{d,\{c,k\}} - \mathbf{y}_{a,\{c,k\}} \|_{2}^{2}) \exp(-\underbrace{L_{p-u}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \boldsymbol{y}_{a,\{c,k\}}))}_{\text{privacy-utility measure}})$$

$$p(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}}) = p(\boldsymbol{\theta}_{d} | \mathbf{y}_{d,\{c,k\}}) p(\mathbf{y}_{d,\{c,k\}}) \propto \exp(-L_{d}(\boldsymbol{\theta}_{d}, \mathbf{y}_{d,\{c,k\}})) \underbrace{p(\mathbf{y}_{d,\{c,k\}})}_{p(\mathbf{y}_{d,\{c,k\}})}$$

discriminative measure

•
$$p(\boldsymbol{\theta}_a, \mathbf{y}_{a,\{c,k\}}) = p(\boldsymbol{\theta}_a | \mathbf{y}_{a,\{c,k\}}) p(\mathbf{y}_{a,\{c,k\}}) \propto \exp(-\underbrace{L_a(\boldsymbol{\theta}_a, \mathbf{y}_{a,\{c,k\}})}_{\text{ambiguous measure}}) p(\mathbf{y}_{a,\{c,k\}})$$

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 13 / 25

appreciate prior

Support Intersection Based Measures

Support Intersection Based Measures

$$\begin{aligned} & \operatorname{Sim}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{+}\|_{1} \\ & \operatorname{Dis}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{+}\|_{1} \\ & \operatorname{Stg}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1} \odot \mathbf{y}_{2}\|_{2}^{2} \end{aligned}$$

Support Intersection Based Measures

Support Intersection Based Measures

$$\begin{aligned} &\text{Sim}(\mathbf{y}_{1}, \mathbf{y}_{2}) \ = \ \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{+}\|_{1} \\ &\text{Dis}(\mathbf{y}_{1}, \mathbf{y}_{2}) \ = \ \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{+}\|_{1} \\ &\text{Stg}(\mathbf{y}_{1}, \mathbf{y}_{2}) \ = \ \|\mathbf{y}_{1} \odot \mathbf{y}_{2}\|_{2}^{2} \end{aligned}$$

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 14 / 25

Support Intersection Based Measures

Support Intersection Based Measures

$$\begin{aligned} &\text{Sim}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{+}\|_{1} \\ &\text{Dis}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1}^{+} \odot \mathbf{y}_{2}^{-}\|_{1} + \|\mathbf{y}_{1}^{-} \odot \mathbf{y}_{2}^{+}\|_{1} \\ &\text{Stg}(\mathbf{y}_{1}, \mathbf{y}_{2}) = \|\mathbf{y}_{1} \odot \mathbf{y}_{2}\|_{2}^{2} \end{aligned}$$

Dimche Kostadinov, et al.

Support Intersection Based Measures

Functional

Dissimilarity Parameters

$$\boldsymbol{\theta} = \{\boldsymbol{\theta}_d, \boldsymbol{\theta}_a\}, \ \boldsymbol{\theta}_d = \{\boldsymbol{\theta}_{d1}, \boldsymbol{\theta}_{d2}\} = \{\{\boldsymbol{\tau}_{d,1}, \dots, \boldsymbol{\tau}_{d,D1}\}, \{\boldsymbol{\nu}_{d,1}, \dots, \boldsymbol{\nu}_{d,D2}\}\}$$

Similarity Parameters

Dissimilarity Parameters

$$\boldsymbol{\theta}_{a} = \{\boldsymbol{\theta}_{a1}, \boldsymbol{\theta}_{a2}\} = \{\overline{\{\boldsymbol{\tau}_{a,1}, ..., \boldsymbol{\tau}_{a,A1}\}}, \underbrace{\{\boldsymbol{\nu}_{a,1}, ..., \boldsymbol{\nu}_{a,A2}\}}_{\text{Similarity Parameters}}\}$$

Similarity Parameters

Discrimination/Ambiguization Measures:

$$L_p(\boldsymbol{\theta}_p, \mathbf{y}_{p,\{c,k\}}) = \frac{1}{\beta_p} \min_{p1, p2 \in \mathcal{D}} \left(\mathsf{Sim}(\mathbf{y}_{p,\{c,k\}}, \boldsymbol{\tau}_{p,p1}) + \mathsf{Stg}(\mathbf{y}_{p,\{c,k\}}, \boldsymbol{\nu}_{p,p2}) \right)$$

Discriminative-Ambiguous Measure:

$$L_{p-u}(\mathbf{y}_{d,\{c,k\}},\mathbf{y}_{a,\{c,k\}}) = \frac{1}{\beta_I} \mathsf{Sim}(\mathbf{y}_{d,\{c,k\}},\mathbf{y}_{a,\{c,k\}}) + \frac{1}{\beta_S} \mathsf{Stg}(\mathbf{y}_{d,\{c,k\}},\mathbf{y}_{a,\{c,k\}})$$

Dimche Kostadinov, et al.

-Support Intersection Based Measures

Supervised Setup

•
$$V(\mathbf{Y}_d, \mathbf{Y}_a) = \frac{1}{CK} \sum_{c,k} (L_{p-u}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}))$$

•
$$\mathbb{E}[L_d(\boldsymbol{\tau}_{d,c}, \boldsymbol{\nu}_{d,c}, \mathbf{y}_{d,\{c,k\}})] \sim D(\mathbf{Y}_d)$$

$$D(\mathbf{Y}_d) = \frac{1}{CK} \frac{1}{\beta_d} \sum_c \sum_{c_1 \neq c} \sum_k \sum_{k_1} \left(\mathsf{Sim}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{d,\{c_1,k_1\}}) + \mathsf{Stg}(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{d,\{c_1,k_1\}}) \right)$$

• $\mathbb{E}[L_a(\boldsymbol{\tau}_{a,c}, \boldsymbol{\nu}_{a,c}, \mathbf{y}_{a,\{c,k\}})] \sim S(\mathbf{Y}_a)$

$$S(\mathbf{Y}_{a}) = \frac{1}{CK} \frac{1}{\beta_{d}} \sum_{c} \sum_{k} \sum_{k1 \neq k} \left(\mathsf{Sim}(\mathbf{y}_{a,\{c,k\}}, \mathbf{y}_{a,\{c,k1\}}) + \mathsf{Stg}(\mathbf{y}_{a,\{c,k\}}, \mathbf{y}_{a,\{c,k1\}}) \right)$$

Dimche Kostadinov, et al.

Stochastic Information Processing (SIP) Group

CISS 2019 16 / 25

-Support Intersection Based Measures

Problem Formulation

$$\begin{array}{l} \underset{\mathbf{Z},\mathbf{Y}_{d},\mathbf{Y}_{a},\mathbf{W}_{d},\mathbf{W}_{a}}{\min} \sum_{p \in \{d,a\}} \left(\begin{array}{c} \overbrace{\frac{1}{2} \| \mathbf{W}_{p} \mathbf{X} - \mathbf{Y}_{p} \|_{F}^{2}}_{p \in \{d,a\}} + \overbrace{\lambda_{p,1} \sum_{c,k} \| \mathbf{y}_{p,\{c,k\}} \|_{1}}_{c,k} \right) \\ & \xrightarrow{\text{Discriminative-Ambiguous}}_{constraint} \\ + \frac{1}{2} \| \mathbf{Z} - \mathbf{Y}_{a} - \mathbf{Y}_{d} \|_{F}^{2} + \overbrace{V(\mathbf{Y}_{d},\mathbf{Y}_{a})}^{constraint} \\ & \xrightarrow{\text{Discrimination Constraint}}_{constraint} \\ + \underbrace{D(\mathbf{Y}_{d})}_{c,k} + \underbrace{S(\mathbf{Y}_{a})}_{c,k} \\ & \xrightarrow{\text{Discrimination Constraint}}_{constraint} \\ & \xrightarrow{\text{Discrimination Constraint}}_{constraint}_{co$$

Learning Algorithm

Learning Algorithm

We propose an iterative, alternating algorithm with five distinct stages:

(i) and (ii): Estimating discriminative (or ambiguous) representation
(iii): Estimating the public (protected) representation
(iv) and (v): Updating the linear maps

We show that the problems at all stages have an **exact** or **approximate closed-form solutions**.

Learning Algorithm

Learning Algorithm Estimating Discriminative (or Ambiguous) Representation

- Given data samples X, protected representation Z and current estimate W_d and W_a
- Discriminative (ambiguous) representation estimation problem is formulated as:

$$\begin{split} \min_{\mathbf{Y}_{p}} & \frac{1}{2} \|\mathbf{W}_{p}\mathbf{X} - \mathbf{Y}_{p}\|_{F}^{2} + \frac{1}{2} \|\mathbf{Z} - \mathbf{Y}_{d} - \mathbf{Y}_{a}\|_{F}^{2} + V(\mathbf{Y}_{d}, \mathbf{Y}_{a}) \\ & + D(\mathbf{Y}_{d}) + S(\mathbf{Y}_{a}) + \lambda_{p,1} \sum_{c,k} \|\mathbf{y}_{p,\{c,k\}}\|_{1}, \forall p \in \{d, a\} \end{split}$$

Nonlinear Transform Estimation closed-form:

$$\mathbf{y}|_{\{p1,p2\}} = \operatorname{sign}(\mathbf{u}_{p,\{c,k\}}) \odot \max(|\mathbf{u}_{p,\{c,k\}}| - \mathbf{g}_{p,\{c,k\}} - \lambda_{p,1}\mathbf{1}, \mathbf{0}) \oslash (\mathbf{k}_{p,\{c,k\}})$$

Dimche Kostadinov, et al.

Learning Algorithm

Learning Algorithm Estimating the Public (protected) Representation

> Given the estimated discriminative and ambiguous representations, the protected representation is estimated as:

$$\mathbf{z}_{c,k} = f\left(\mathbf{y}_{d,\{c,k\}}, \mathbf{y}_{a,\{c,k\}}, \mathbf{n}\right)$$

- Objective Perturbation: Impose random noise n during the learning phase
- Output Perturbation: Impose random noise n to the final representation

Learning Algorithm

Learning Algorithm Updating the Linear Maps

- ▶ Given: data samples \mathbf{X} , all representations $\mathbf{Y}_p, p \in \{d, a\}$
- The problem related to the estimation of the linear map W_p, reduces to:

$$\begin{split} \min_{\mathbf{W}_p} \frac{1}{2} \|\mathbf{W}_p \mathbf{X} - \mathbf{Y}_p\|_2^2 + \frac{\lambda_{p,3}}{2} \|\mathbf{W}_p\|_F^2 \\ + \frac{\lambda_{p,4}}{2} \|\mathbf{W}_p \mathbf{W}_p^T - \mathbf{I}\|_F^2 - \lambda_{p,5} \log |\det \mathbf{W}_p^T \mathbf{W}_p| \end{split}$$

We use an approximate closed-form solution

Dimche Kostadinov, et al.

Performance Evaluation

Evaluation

Computational Efficiency

AR					E-YALE-B				
\mathbf{W}_{a}		\mathbf{W}_d			\mathbf{W}_{a}		\mathbf{W}_d		
κ	μ	κ	μ	t	κ	μ	κ	μ	t
155	0.002	144.98	0.002	8.094	23.32	0.001	11.96	0.001	11.24

Table: The computational efficiency per iteration t[sec] for the proposed algorithm, the conditioning number κ and the expected mutual coherence μ for the linear maps \mathbf{W}_a and \mathbf{W}_d .

Performance Evaluation

Evaluation

	COIL	E-YALE-B	AR
Discriminative representation	99.86	94.4	88.57
Ambiguous representation	21.25	2.87	11.14
Coupled representation	96.80	94.81	75.38
Original data	100	81.41	84.57

Table: The k-NN results on the original data and the assigned NT representations.

23 / 25

Performance Evaluation

Performance Evaluation

