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Abstract—This paper presents a novel nonlinear transform
model for learning of collaboration structured, discriminative
and sparse representations. The idea is to model a collaboration
corrective functionality between multiple nonlinear transforms
in order to reduce the uncertainty in the estimate. The focus is
on the joint estimation of a data-adaptive nonlinear transforms
(NTs) that take into account a collaboration component w.r.t. a
discrimination target. The joint model includes minimum infor-
mation loss, collaboration corrective and discriminative priors.
The model parameters are learned by minimizing the empirical
negative log likelihood of the model, where we propose an efficient
solution by an iterative, coordinate descend algorithm. Numerical
experiments validate the potential of the learning principle. The
preliminary results show advantages in comparison to the state-
of-the-art methods, w.r.t. the learning time, the discriminative
quality and the recognition accuracy.

Index Terms—unsupervised feature learning, target specific
self-collaborative model, discriminative min-max prior, joint
learning of nonlinear transforms

I. INTRODUCTION

In the recent years, the area of machine learning has
had significant progress and advances. Various algorithms in
different applications showed excellent results. Crucial to many
approaches is the estimation/learning of task-relevant, useful
and information preserving representation.

To differentiate the data that originates from different groups,
many unsupervised learning methods [24], [35], [1], [18], [36],
[3], [8], [11] were proposed. Their primary target is to describe
and identify the underlining explanatory groups within the data
with (or without) data priors. Usually, a data representation
expressed with respect to the groups is used as an unsupervised
feature.

Many discriminative descriptions were offered by the sparse
(or structured sparse) models [4], [15], [14], [2],[16], the
discriminative clustering approaches [42], [18] and the dis-
crimination dictionary learning methods [28], [43], [38] and
[37], where it is assumed that the true data exhibits a form of
sparse structure.

However, so far, to the best of our knowledge, a joint discrim-
ination centered, collaboration structured and sparse modeling
was not explored. Due to the ambiguities in specifying a notion
of discrimination and task focused collaboration, the related
learning problem is challenging. The main open issues are
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the data model and the appropriate priors, which delimit the
problem formulation and the definition of a suitable objective.

A. Joint Modeling of Nonlinear Transforms with Target Specific
Self-Collaboration

In general, for any modeling usually we assume an error
distribution that (1) reflects to the model correctness w.r.t. the
true data distribution and the task at hand and (2) is significant
for the robustness in the estimate. At the same time the right or
wrong error assumption is crucial since it leads to accumulation
or removal of uncertainties related to the target-specific goal.
− Motivations: Under a priori unknown error distribution

w.r.t. certain task, a single estimate might have high variability.
Therefore, a joint model of multiple transforms, where a relation
between the errors of the transform representations is addressed
might be more suitable. Since even if the errors in the transform
representation alone have high variability, the joint composition
will have the possibility to compensate for this variability.
− Discriminative Self-Collaboration Model: In this paper,

we propose a novel model for joint learning of multiple
nonlinear transforms parametrized by linear maps and element-
wise nonlinearities. Instead of focusing on a particular error
distribution per transform we focus on explicitly modeling
of a relationship between the transform errors. The modeling
is towards a target-specific goal expressed through the self-
collaboration discriminative and minimum information loss
priors. In this scene, we introduce a self-collaboration function-
ality, which to the best of our knowledge is first of this kind that
extends and generalizes the sparsifying transform model [6],
[31] and [29]. The proposed model offers several advantages,
including (i) specification of one or combination of arbitrary
goals, (ii) structuring per target-specific goals, (iii) supervised,
unsupervised and semi-supervised centric collaboration and
(iv) parallel and distributed parameter learning.
− Learning Strategy: Given observed data, the model param-

eters are learned by minimizing the empirical approximation
to the expected negative log likelihood of the model. The
learning target is the expected negative log likelihood of the
collaboration component and the discriminative prior that gives
interpretation about the models empirical risk and unfolds it
as optimization cost that has to be minimized during learning.



II. SPARSE MODELING AND RELATED WORK

In the subsequent subsections, we first describe the common
sparse models, including the sparsifying transform model [32],
[31] and [30] that is basis to the model that we propose, then
we give the related work in the line of discriminative and
sparse representations.

A. 2.1. Sparse Models

In the following, we introduce the primary sparse models.
− Synthesis Model: A synthesis model [6] and [31] (or

regression model with sparsity regularized penalty) synthesizes
a data sample xc,k ∈ <N as an approximation by a sparse linear
combination yc,k ∈ <M (‖yc,k‖0 << M ), of a few vectors
dm ∈ <N , from a dictionary D = [d1, ...,dM ] ∈ <N×M , i.e.,
xc,k = Dyc,k+zc,k, where zc,k ∈ <N denotes the error vector
defined in the original data domain.
− Analysis Model: It uses a dictionary Ω ∈ <M×N with

M > N to analyze the data xc,k ∈ <N . This model assumes
that the product of Ω and xc,k is sparse, i.e., yc,k = Ωxc,k
with ‖yc,k‖0 = M − s, where 0 ≤ s ≤ M is the number of
zeros in y ∈ <M [33] and [10]. The vector yc,k is the analysis
sparse representation of the data xc,k w.r.t. Ω.
− Transform Model: In contrast to the synthesis model

and similar to the analysis model [6] [29], [30] and [17], the
sparsifying transform model does not target explicitly the data
reconstruction. This model assumes that the data sample x
is approximately sparsifiable under a linear transform A ∈
<M×N , i.e., Axc,k = yc,k + zc,k, zc,k ∈ <M , where y is
sparse ‖yc,k‖0 << M , and the error vector zc,k is defined in
the transform domain.

B. 2.2. Structured Discrimination Constraints

To address the estimation of discriminative sparse represen-
tations (in a supervised or unsupervised setup) the previous
models usually are learned with a constraints. The commonly
used penalties are set on (i) the dictionary, (ii) the sparse
representation (e.g., pairwise similarity, encoding w.r.t. a graph
and structured sparsity) and (iii) the cost w.r.t. a classifier. In
the following, we indicate the primary portion of related work.
− Structured Sparsity Methods: The structured sparsity

models were widely used in many practical problems, including
model-based compressive sensing [4], signal processing [6],
[29], [30] and [10], computer vision [15], bio-informatics
[39] and recommendation systems [16]. In this paper, we
use structuring w.r.t. a targeted collaboration to reduce the
uncertainty in the estimate w.r.t. the discriminative properties
of the NT representations.
− Discriminative Dictionary Learning (DDL): Discrimi-

nation constraints were mainly defined by exploiting labels.
The class of algorithms is known as discriminative dictionary
learning methods (DDL) [28], [43], [38] and [37]. Our approach
addresses the unsupervised case with discrimination constraints.
− Discriminative Clustering: In [42], clustering with

maximum margin constraints was proposed. The authors in [1]
proposed linear clustering based on a linear discriminative cost
function with convex relaxation. In [18] regularized information

maximization was proposed and simultaneous clustering and
classifier training was preformed. The above methods rely on
kernels and have high computational complexity. The proposed
method learns to reduce or extend dimensionality through a
transform that enforces discrimination.
− Auto-encoders: The single layer auto-encoder [3] and

its denoising extension [36] consider robustness to noise and
reconstruction. While the idea is to encode and decode the data
using a reconstruction loss, an explicit constraint that enforces
discrimination is not addressed.

III. PAPER ORGANIZATION AND NOTATIONS

A. Paper Organization

Section 4 introduces and explains the joint model and the
priors. Sections 5 reveals the learning target, identifies the
empirical risk and presents the problem formulation. Section
6 proposes a solution using an iterative, alternating algorithm.
Section 7 provides the numerical experiments and evaluation,
and Section 8 concludes the paper.

B. Notations

A scalar, vector and matrix are denoted using standard,
lower bold and upper bold case symbols as x, x and X,
respectively. A set of L sets of data representations is denoted
as Y = [Y1, ...,YL], where the set of data representations
Yl = [yl,{1,1}, ...,yl,{C,K}] ∈ <M×CK . For every l ∈
{1, ..., L}, every class c ∈ C = {1, ..., C} has K samples,
i.e., [yl,{c,1}, ...,yl,{c,K}] ∈ <M×K . The set of L components
for index {c, k} is denoted as Y{c,k} = [y1,{c,k}, ...,yL,{c,k}].
The `p−norm, the Hadamard product and element-wise division
are denoted as ‖.‖p , � and �, respectively.

IV. TARGET SPECIFIC UNCERTAINTY REDUCTION MODEL

Our model cores around three elements: (i) a self-
collaboration nonlinear modeling, (ii) an unsupervised and
collaborative discriminative prior described using a (iii) min-
max cost which includes a formally defined notion for similarity
and dissimilarity contributions.

The model describes a generalized structured nonlinearity
of L data representations yl,{c,k},∀l ∈ {1, ..., L} that explain
the data xc,k with collaborative uncertainty reduction term and
priors. The joint model expresses as p(xc,k,Y{c,k},θ,A) =
p(xc,k,Y{c,k},θ|A)p(A), where we assume that
p(xc,k,Y{c,k},θ|A) = p(xc,k|Y{c,k},A)p(θ,Y{c,k}).

A. Joint Modeling with Collaboration

We model multiple nonlinear transforms with a collaboration
component as follows:

p(xc,k|Y{c,k},A) ∝
∏
l

exp(− 1

β0
(zTl,{c,k}zl,{c,k}+

fTSC(zl,{c,k}, gA(Z{c,k}\l)))),

(1)

where Y{c,k} = [y1,{c,k}, ...,yL,{c,k}], A = [A1, ...,AL],
Z{c,k}\l = [z1,{c,k}, ..., zl−1,{c,k}, zl+1,{c,k}, ..., zL,{c,k}]. The
term fTSC(zl,{c,k}, gA(Z{c,k}\l)) : <M × <M → < denotes
a target specific collaboration function, that we define it as
zTl,{c,k}gA(Z{c,k}\l) and gA(Z{c,k}\l) : <M× ...×<M → <M



denotes the collaboration aggregation function, that we define
as gA(Z{c,k}\l) =

∑
l1 6=l zl1,{c,k} ∈ <M . The model (1)

assumes that the data sample xc,k indexed by k from group c
is approximately sparsifiable under any of the linear transforms
Al ∈ <M×N , l ∈ {1, ..., L}, the target specific collaboration
function fTSC and the collaboration aggregation function gA,
i.e., Alxc,k = yl,{c,k} + vl,{c,k} +

∑
l16=l zl1,{c,k}, where

yl,{c,k} ∈ <M is the sparse representation, vl,{c,k} ∈ <M is
the corrected sparsifying error vector and zl,{c,k} = Alxc,k −
yl,{c,k}.
− Self-Collaboration: The uncertainty reduction by (1)

is w.r.t. a target described by the relation on the error
terms zl1,{c,k}. The terms zTl,{c,k}

∑
l1 6=l zl1,{c,k} act as a

self-regularization that tries to compensate for the unknown
distribution of zl,{c,k} by reducing the uncertainty w.r.t. the
affine combination cl,{c,k} =

∑
l16=l zl1,{c,k} of the rest of

unknown distributions for zl1,{c,k}. The goal is to allow the
individual zl,{c,k} to describe only a portion of the targeted,
but, unknown probability distribution of zl,{c,k} in order to
reduce the uncertainty and give a reliable and robust estimate
w.r.t. a composition and aggregation function that in our case
is simply a concatenation [y1,{c,k}, ...,yL,{c,k}].
− Prior on zl: The transform representation yl,{c,k} =
TPl,c

(xc,k) takes into account a nonlinearity and Alxc,k −
cl,c is only seen as its linear approximation. In the simplest
form we model zl,{c,k} by p(xc,k|yl,{c,k},Al) to be a Gausian
distributed. Additional knowledge about zl,{c,k} can be used
to model p(xc,k|yl,{c,k},Al).
− Prior on Al: Additionally, we have a prior on Al

that penalizes the information loss in order to avoid trivially
unwanted matrices Al, i.e., matrices that have repeated or
zero rows. This prior measure is denoted as Ω(Al) =
( 1
βl,3
‖Al‖2F + 1

βl,4
‖AlA

T
l − I‖2F − 1

βl,5
log |det AT

l Al|). The
terms 1

βl,3
‖Al‖2F+ 1

βl,4
‖AlA

T
l −I‖2F− 1

βl,5
log |det AT

l Al| are
used to regularize the conditioning and the expected coherence
of Al (for more details please see [17]).

B. Self-Collaboration Discriminative Prior

A joint probability expresses the unsupervised discriminative
prior as:

p(θ,Y{c,k}) =
∏
l

p(θ|yl,{c,k})p(yl,{c,k}), (2)

and it allows explicit modeling of (i) dependences between θ
and yl,{c,k} or modeling of (ii) dependences between θl and
yl,{c,k}, where only the relation between θl and yl,{c,k} is
considered.

In this paper we address independent modeling per θl and
yl,{c,k} and consider that (2) has the form as:

p(θ,Y{c,k})=
∏
l

p(θl|yl,{c,k})p(yl,{c,k}), (3)

and that p(θl|yl,{c,k}) ∝ exp(−lI(θl,yl,{c,k})), where
lI(θl,yl,{c,k}) is a discriminative measure for similarity
contributions over the parameters θ = {θ1, ...,θL} and
p(yl,{c,k}) ∝ exp(−‖yl,{c,k}‖1

βl,1
) is a sparisty inducing prior.

It is assumed that θ = {θ1, ...,θL} where θl =
{θl,1,θl,2} = {{τl,1, ..., τl,C1}, {νl,1, ...,νl,C2}} cover sim-
ilarity and dissimilarity regions in the transform space and take
into account a form of collaboration.

The use of the measure lI(θl,yl,{c,k}) allows us to introduce
a concept that relies on collaboration corrective to covering of
similarity and dissimilarity regions by taking into account a
relations between θl and Y{c,k}.
− Prior Measures: To define lI(θl,yl,{c,k}) it is assumed

that (i) p(θl) = p(θl,1)p(θl,2) =
∏
c1 p(τl,c1)

∏
c2 p(νl,c2),

(ii) lI(θl,yl,{c,k}) is determined by relations on the support
intersection between yl,{c,k}, τl,c1 and νl,c2, and (iii) the
description is decomposable w.r.t. τl,c1 and νl,c2, ∀{c1, c2} ∈
{{1, ..., C1}, {1, ..., C2}}.

Two measures %(yl,{c,k},yl,{c1,k1}) = ‖y−l,{c,k} �
y−l,{c1,k1}‖1 + ‖y+

l,{c,k} � y+
l,{c1,k1}‖1 and

ς(yl,{c,k},yl,{c1,k1}) = ‖yl,{c,k}�yl,{c1,k1}‖22 are used, where
yl,{c,k} = y+

l,{c,k}−y−l,{c,k},yl,{c1,k1} = y+
l,{c1,k1}−y−l,{c1,k1},

y+
l,{c,k} = max(yl,{c,k},0) and y−l,{c,k} = max(−yl,{c,k},

0). The measure %(yl,{c,k}, yl,{c1,k1}) is related to
similarity. Since, when yTl,{c,k}yl,{c1,k1} is considered,
%(yl,{c,k},yl,{c1,k1}) captures contribution for the similarity,
whereas ‖y+

l,{c,k} � y−l,{c1,k1}‖1 + ‖y−l,{c1,k1} � y+
l,{c1,k1}‖1

captures the contribution for the dissimilarity between the
vectors yl,{c,k} and yl,{c1,k1}. On the other hand, ς measures
only the strength on the support intersection. The motivation is
to use these measures and impose a discrimination constraint
without any explicit assumption about the space/manifold in
the transform domain.

A discriminative assignment w.r.t. to the parameters θl that
describe regions of similarity and dissimilarity in a collaborative
way represents a trade-off between three elements: (i) similarity
contribution, (ii) dissimilarity contribution and (iii) uncertainty
corrective contribution w.r.t. a measure. A min-max functional
lI(θl,yl,{c,k}) is one particular form that can be used to
measures the score of this trade-off that we define it as follows:

lI(θl,yl,{c,k}) =
1

βI
min

1≤c1≤C1
max

1≤c2≤C2
(%(yl,{c,k}, τl,c1)+

%(yl,{c,k},νl,c2) + ς(yl,{c,k}, τl,c1)),
(4)

where βI is scaling parameter. By assumption τl,c1 and νl,c2
are spread far apart and cover the corresponding similarity
and dissimilarity regions in the transform domain. Therefore,
the min-max cost lI(θl,yl,{c,k}) ensures that yl,{c,k} in the
transform domain will be located at the point where (i) the
similarity contribution w.r.t. τl,c1 is the smallest measured w.r.t.
%, (ii) the strength of the support intersection w.r.t. τl,c1 is the
smallest measured w.r.t. ς , and (iii) the similarity contribution
w.r.t. νl,c2 is the largest measured w.r.t. %.

V. JOINT LEARNING OF NONLINEAR TRANSFORMS WITH
TARGETED SELF-COLLABORATION

In this section, first we explain the connections of the
approximative log likelihood to an empirical risk and reveal the
learning objective. then we presents the problem formulation.



A. Discriminating Self-Collaboration Likelihood as
Empirical Risk

The learning goal is to estimate the parameters Y{c,k},θ and
A that model the joint probability p(xc,k,Y{c,k},θ,A) such
that maximize the discrimination and collaboration specific log
likelihood of the representations yl,{c,k}.

We take into account an approximation to the empirical
expectation of the log likelihood of our model that factors into
(i) the transform model probability p(xc,k|Y{c,k},A) and (ii)
the discrimination probability prior p(θ,Yl,{c,k}), i.e.,

−E[log p(xc,k|Y{c,k},A)]− E[log p(θ,Yl,{c,k})], (5)

where we note that the explicit modeling of the parameters θl
results into clustering (or classification) based on maximum
discrimination likelihood principle over a functional measure,
and the estimation of yl,{c,k} is in fact an assignment.
− Empirical Risk: Let yl,{c,k} be given, we denote its

cumulative cost w.r.t. the discrimination and collaboration
corrective parameters as:

ξl,{c,k} =tTl,{c,k}|yl,{c,k}|+ cTl,{c,k}yl,{c,k}+

nTl,{c,k}(yl,{c,k} � yl,{c,k})
(6)

where tl,{c,k} = max(τl,c,0) � sign(max(ul,{c,k},0)) +
max(−τl,c,0) � sign(max(−ul,{c,k},0)) −
(max(νl,c,0) � sign(max(ul,{c,k},0)) + max(−νl,c,0) �
sign(max(−yl,{c,k},0))) and nl,{c,k} = τl,c � τl,c. In
fact, the empirical expectation of the cost (6), i.e.,
PE : 1

CK

∑
c,k ξl,{c,k} ' E[ξl,{c,k}] represents the empirical

risk for the proposed nonlinear transform model w.r.t. the used
self-collaboration component and discrimination prior.

Therefore, we say that the learning objective is to estimate
the model parameters that maximize a collaboration-corrective
discriminative log likelihood (5). Or, in other words, during
learning we target to estimate the model parameters that
minimize the empirical risk (PE).

B. The Problem Formulation

A joint maximization of p(xc,k,Y{c,k},θ,A)
over Y{c,k},θ and A is difficult. Instead, we
consider minimizing E[− log p(xc,k,Y{c,k},θ|A)p(A)],
where p(xc,k,Y{c,k},θ|A) =
p(xc,k|Y{c,k},A)

∏
l p(θl|yl,{c,k})p(yl,{c,k}). Moreover,

given a data set X, we minimize the unnormalized empirical
approximation of the negative log likelihood for our model.
The considered problem has the following form:

min
Ω

∑
l

(
1

2
‖AlX−Yl‖2F +

∑
c,k

(lI(θl,yl,{c,k})+λl,1‖yl,{c,k}‖1)

+
1

L
Tr{(AlX−Yl)

T
∑
l16=l

(Al1X−Yl1)}+Ω(Al)

)
,(7)

where Ω = {Y,θ,A}, Y = [Y1, ...,YL], A = [A1, ...,AL],
and λl,1 is inversely proportional to the scaling parameter β1,0.

− Integrated Marginal Maximization: We highlight that for
our model, the solution to (7) is not equivalent to the maximum

a posterior (MAP) solution1, which would be difficult to
compute, as it involves integration over xc,k, yl,{c,k} and θ.
Instead, we perform an integrated marginal minimization that
is addressed with (7) and solved by iteratively marginally
maximizing p(xc,k,Y{c,k},θ,A) in A, Y{c,k} and θ. This is
equivalent to 1) maximizing the conditional p(xc,k|Y{c,k},A)
with prior p(A) =

∏
l p(Al) over A, 2) maximizing the

conditional p(xc,k|Y{c,k},A) with prior p(θl|yl,{c,k}) over
yl,{c,k} and 3) maximizing the conditional p(yl,{c,k}|θl) over
θl. The algorithm allows us to find a joint local maximum
in {A,Y{c,k},θ} for p(xc,k,Y{c,k},θ,A), such that the
discrimination and collaboration specific prior probability is
maximized (or in other words, the expected unnormalized
negative log likelihood (5) is minimized).

In the following section, we present the learning algorithm
through which we solve (7).

VI. THE LEARNING ALGORITHM

As a solution to (7), we propose an iterative, alternating
algorithm with three distinct stages: (i) representation yl,{c,k}
estimation with discriminative assignment, (ii) discrimination
parameters θ estimation and (iii) linear map Al estimation. At
the same time, we show that the problems at all stages have
an exact or approximate closed-form solutions.

A. Discriminative Representation yl,{c,k} Estimation

Given the available data samples X and the current esti-
mate Al, the discriminative representation estimation prob-
lem per Yl is decoupled and is formulated as: (PDRE) :
minYl

‖AlX − Yl‖2F + 1
LTr{Y

T
l

∑
l1 6=l(Yl1 − Al1X))} +∑

c,k(lI(θl,yl,{c,k}) + λl,1‖yl,{c,k}‖1).
We propose a solution for this stage that consists of two

steps: (i) estimation of nonlinear transforms and (ii) nonlin-
ear transform assignment based on the min-max functional
discrimination score.
− Nonlinear Transforms Estimation Given all Yl except

yl,{c,k}, denote cl,{c,k} = 1
2L

∑
l1(yl1,{c,k} −Al1xc,k),b =

bl,{c,k} = Alxc,k+cl,{c,k} then for any y = yl,{c,k}, problem
(PDRE) reduces to a constrained projection (PDRE−R) : y =
arg miny ‖b− y‖22 + lI(θl,yl,{c,k}) + λl,1‖yl,{c,k}‖1.

Assuming that (v − g)T |y| ≥ 0, per each pair
{τl,c1,νl,c2},{c1, c2} ∈ {{1, ..., C1} × {1, ..., C2}},
(PDRE−R) has a closed-form solution as:

y|{c1,c2} = sign(b)�max (|b| − p,0)� n, (8)

where p = λl,0(v − g) − λl,11, n = (1 + 2λl,0s), g =
sign(max(q,0)) � d+

1 + sign(max(−q,0)) � d−1 , v =
sign(max(q,0)) �d+

2 +sign(max(−q,0))�d−2 , d+
1 = τ+

l,c1,
d−1 = τ−l,c1, d+

2 = ν+
l,c2, d−2 = ν−l,c2 and s = τl,c1�τl,c1. (the

proof is given in Appendix A).
− Discriminative Assignment This step consists of two

parts.

1The MAP estimation problem for our model is identical to (7), but has
additional terms that are related to the partition functions of p(xc,k|Y{c,k},
A) and p(θ,Y{c,k}).



Part 1 Given the estimated y|{c1,c2}, {c1, c2} ∈
{1, ..., C1}×{1, ..., C2}, the first part evaluates a score related
to lI(θl,yl,{c,k}) as follows:
lI : sP (c1, c2) = %(y|{c1,c2}, τl,c1)−

%(y|{c1,c2},νl,c2) + ς(y|{c1,c2}, τl,c1). (9)

Part 2 Based on the score (9), the second part assigns
y|{c1,c2} to yl,{c,k} using:

{ĉ1, ĉ2} = arg min
c1,c2

sI(c1, c2), yl,{c,k} = y|{ĉ1,ĉ2}. (10)

Note that the maximum discrimination likelihood w.r.t.
lI(θl,yl,{c,k}) is equivalent to computing a minimum score
over sI as in (10).

B. Parameters θ Update

Given the estimated representations yl,{c,k}, we update
the parameters θl,∀l ∈ {1, .., L}. Note that in the dis-
criminative assignment (step (ii), parts 1 and 2), we have
(Ass) : {yl,{c,k} : {y|{c1,c2}, τl,c1,νl,c2}}, that is for each
yl,{c,k} the corresponding τl,c1 and νl,c2 are known. Therefore,
lI(θl,yl,{c,k}) is not evaluated at this stage, instead we use
(Ass) for the update of the parameters θl.
− Update per single τl,c1: Using (Ass), we formulate the

problem associated to the update of τl,c1 as follows:

τl,c1 = arg min
τl,c1

1

2
‖τ t−1l,c1 − τl,c1‖

2

2
+

λl,0
∑
c1

(ς(y|{c1,c2}, τl,c1) + %(y|{c1,c2}, τl,c1)),(11)

where τ t−1l,c1 and τl,c1 are the parameters at iteration t− 1 and
t, and λl,0 is inversely proportional to the scaling parameter βI .
The solution to (11) is similar to the solution (8), the difference
is that in the solution for (11) the respective thresholding is
different and there is no normalization vectors (the proof is
given in Appendix B.1).
− Update per single νl,c2: Similarly, we use (Ass) and

formulate the problem related to update of νl,c2 as νl,c2 =

arg minνl,c2

1
2‖ν

t−1
l,c2 − νl,c2‖

2

2
+ λl,0

∑
c2 ς(y|{c1,c2},νl,c2),

where νt−1c2 and νc2 denotes the parameters at iteration t− 1
and t. Again, the solution here is similar to the solution (8)
with the difference that in the solution for νl,c2 there is no
thresholding and the normalization vector is different (the proof
is given in Appendix B.2).

C. Linear Map Al Estimation

Given the data samples X, all Y = [Y1, ...,YL], and all
A except Al, denote Wl = Yl −

∑
l1(Al1X−Yl1) then the

problem related to the estimation of the linear map Al, reduces
to minAl

1
2‖AlX−Wl‖22 +

λl,2

2 ‖Al‖2F +
λl,3

2 ‖AlA
T
l −I‖2F −

λl,4 log |det AT
l Al|, where {λl,2, λl,3, λl,4} are inversely pro-

portional to the scaling parameters {βl,3, βl,4, βl,5} and we use
approximate closed-form solution as proposed in [17].

VII. EVALUATION OF THE PROPOSED APPROACH

In this section we evaluate the algorithm properties, the
discriminative quality, and the recognition accuracy.

AR YALE B COIL20 NORB
1
L

∑
l µ(Al) 2.1e-4 1e-4 1.9e-4 3.1e-4

1
L

∑
l Cn(Al) 16.1 26.3 18 19.1

TABLE I
THE CUMULATIVE EXPECTED MUTUAL COHERENCE 1

L

∑
l µ(Al) AND THE

CUMULATIVE CONDITIONING NUMBER 1
L

∑
l Cn(Al) FOR THE LINEAR

MAPS Al, l ∈ {1, ..., 6} WITH DIMENSIONS 6570×N , WHERE N IS THE
DIMENSIONALITY OF THE INPUT DATA

AR YALE B COIL20 NORB
learning time [h] L× .212 L× .301 L× .111 L× .261

TABLE II
THE LEARNING TIME IN HOURS ON THE DATABASES AR, YALE B, COIL20
AND NORB USING OUR MODEL WITH DIMENSION M = 6570, NUMBER OF

SELF-COLLABORATION COMPONENTS L = 9, AND DIMENSION PER
SELF-COLLABORATION COMPONENT M/L = 730 .

A. Quantifying a Discrimination Quality

To quantify the discriminative properties of a dataset under
a transform, we introduces a measure about the discrimination
properties of a dataset.

The discriminative properties of a dataset under a transform
with parameter set Pt = {A = [A1, ...,AL]T ∈ <M×N , τ1 ∈
<M} are defined using the relations between two concentrations
DPt

`1
(X) and DPt

`1,c
(X). The first is the expected similarity of

all uc,k = [yT1,{c,k}, ...,y
T
L,{c,k}]

T across all the transform
representations Yc that come from the different classes
c1 6= c, i.e., DP`1(X) =

∑
c

∑
c16=c

∑K
k=1

∑
k16=k (‖u+

c,k �
u+
c1,k1‖1 + ‖u−c,k � u−c1,k1‖1). The second is the expected

similarity using the positive and negative components of
all uc,k = [yT1,{c,k}, ...,y

T
L,{c,k}]

T across all the transform
representations Yc that come from the same classes c, i.e.,
DP`1,c(X) =

∑
c

∑K
k=1

∑
k1 6=k (‖u+

c,k � u+
c,k1‖1 + ‖u−c,k �

u−c,k1‖1). The discrimination power for any pair of labels and
dataset X ∈ <M×CK under a transform with parameter set
Pt = {A ∈ <M×N , τ1 ∈ <M} is defined as:

It = log(DPt

`1,c
(X))− log(DPt

`1
(X) + ε), (12)

where ε > 0 is small constant. By letting A = I and τ = 0
in Pt, (12) allows to measure the discrimination power for
any given data set X. The advantage of this measure is that it
logarithmically signifies the difference between DPt

`1,c
(X) and

DPt

`1
(X). The numerical evaluation shows that this measure

is related to the recognition capabilities and that gives insight
into the learning dynamics of the proposed algorithm.
B. Data Sets and Algorithms Set Up

The used datasets are AR [23], Extended YALE B [7],
COIL20 [25], NORB [20], MNIST [19], F-MNIST [41] and
SVHN [26]. All the images from the respective datasets were
downscaled to resolutions 32× 28, 21× 21, 20× 25, 24× 24,
28× 28 and 28× 28, and are normalized to unit variance.

An on-line variant is used for the update of A w.r.t. a
subset of the available training set. It has the following form
At+1 = At − ρ(At − Â) where Â and At are the the
solutions in the transform update step at iterations t + 1
and t, which is equivalent to having the additional constraint
‖At − Â‖2F in the related problem. The used batch size is equal
to 87%, 85%, 90%, 87%, 5%, 5% and 5% of the total amount



AR YALE B COIL20 NORB
Io 2.13 1.45 1.18 0.41
IR 2.41 1.66 1.61 0.40
IS 2.71 1.76 1.92 0.40
I∗ 3.04 2.14 2.63 0.42

TABLE III
THE DISCRIMINATION POWER IN THE ORIGINAL DOMAIN, AFTER RANDOM

TRANSFORM, AFTER LEARNED SPARSIFYING TRANSFORM AND AFTER
LEARNED SELF-COLLABORATING TARGET SPECIFIC NONLINEAR

TRANSFORM WITH DIMENSION M = 6570.

AR YALE B COIL20 NORB
original domain [%] 96.1 95.4 96.8 97

proposed [%] 97.1 97.1 97.8 96.8

TABLE IV
THE RECOGNITION RESULTS ON THE DATABASES AR, YALE B, COIL20
AND NORB, USING K-NN ON THE SPARSE REPRESENTATIONS USING OUR

MODEL WITH DIMENSION M = 6570.

of the available training data from the respective datasets AR,
Extended YALE B, COIL20, NORB , MNIST, F-MNIST and
SVHN.

C. Numerical Experiments
Sparsifying Nonlinear Transform (sNT) Representation In

the numerical experiments we learn our model using the
proposed algorithm. Next, we construct a sparsifying nonlinear
transform (sNT) representation using our learned model by (i)
computing sparsifying transforms as ul,{c,k} = sign(Alxc,k)�
max(|Alxc,k| − τ1,0) and (ii) concatenating them as uc,k =
[uT1,{c,k}, ...,u

T
L,{c,k}]

T .
The numerical experiments are preformed using the sNT

representations and consist of three parts:
− Model Properties: In the first series of the experiments, we

evaluate the cumulative expected mutual coherence
∑
l µ(Al)

(where µ(Al) is computed as in [17]), the cumulative condition-
ing number

∑
l Cn(Al), Cn(A) = σmax

σmin
(σmax and σmin are

the maximal and minimal singular values of A, respectively)
and the computational efficiency as run time t[h].
− Discrimination Power of the sNT Representation: A

comparison is presented between the discrimination power
I under different transforms. The I is estimated in the original
domain, after transform by a Gaussian random matrix and
after a learned nonlinear transform having transform dimension
M = 6570 without and with discriminative prior, denoted as
Io, IR, IS and I∗, respectively.
− Recognition Accuracy Comparison Proposed vs State-Of-

The-Art: The third part evaluates the discrimination power and
the recognition accuracy using the representations from our
model as features and compares it to several state-of-the-art
(sota) methods, including 1) supervised dictionary learning
methods [28], [43], [38] and [37], 2) unsupervised feature
learning methods [26], [13], [27], 3) different classifiers [40]
and 4) deep neural networks [9], [22], [21], [34].

This comparison considers a setup where the used data are
divided into a training and test set. The learning is performed
on the training set and the evaluation is performed on the test
set. The training sNT representations are used to estimate the
SVM parameters and the recognition is performed using the
learned SVM on the test sNT representations.

YALE B MNIST
I I

dlsi [28] 0.71 0.67
fddl [43] 0.87 0.63
copar [38] 0.57 0.54
lrsdl [37] 0.42 0.40

∗ 0.90 0.81
∗ 0.90 0.81

a)

YALE B
Acc. [%]

96.5
97.5
98.3
98.7

k-nn 97.1
l-svm 98.8

b)

MNIST
Acc. [%]

98.74
96.31
96.41
−

k-nn 97.32
l-svm 98.45

c)
TABLE V

A) THE DISCRIMINATION POWER FOR THE METHODS dlsi[28], fddl [43],
copar [38] AND lrsdl [37] AND THE PROPOSED METHOD ∗, B), C) THE

RECOGNITION RESULTS ON THE EXTENDED YALE B AND MNIST

D. Results
− Model Properties: The cumulative conditioning num-

ber 1
L

∑
l Cn(Al) and the cumulative expected coherence

1
L

∑
l µ(Al) for the learned transforms using the databases

AR, YALE B, COIL20 are shown in Table I. All linear maps
per all the databases have good conditioning numbers and
low expected coherence. This confirms the effectiveness of the
conditioning and the coherence constraints. The running time
t[h], measured in hours for learning the model parameters with
M = 6570 are shown in Table II. The learned transforms for
all the datasets have relatively low execution time, despite the
very high transform dimension.
− Discrimination Quality: The results are shown in Table III.

The discrimination power I∗ is significantly increased in the
transform domain compared to the one in the original domain
IO and is higher than IR and IS .
− Unsupervised Classification Recognition Accuracy: Table

IV shows the recognition results on the databases AR, YALE
B, COIL20 and NORB using k-nn as a classifier, where we
compare the results w.r.t. to the baseline, that is a k-nn in the
original domain and we see improvements. Where as for the
results shown on Tables V and VI we see comparable results.
− Proposed vs State-Of-The-Art Considering the evaluation

of the discrimination power, in all the algorithms, the dictionary
size (transform dimension M ) is set to be equal to {150, 300}
for the used databases, respectively. The discrimination power
is compared with the methods dlsi, fddl, copar and lrsdr. The
results are shown in Table V. The discrimination power of the
sNT representation is higher than the discrimination power of
the comparing methods.

At the databases YALE B and MNIST the recognition
accuracy is also comparable and higher, respectively, w.r.t.
the state-of-the-art DDL methods. The results shown in Table
VI demonstrate improvements and competitive performance
w.r.t. the comparing methods for unsupervised feature learning.

Considering the comparison w.r.t. deep neural networks, [9],
[34] and [21] achieve highest accuracy on MNIST, F-MNIST
and SVHN. We highlight that although we learn a target specific
self-collaboration model with discriminative and sparsity priors,
during testing we use a simple sNT representation. Whereas in
most of the deep neural networks [13], [22], [27], [9], [34], [26]
and [21], the modeling by a multi-layer architecture, the local
image content relations and/or aggregation and nonlinearities
were taken into account.



MNIST
Method Acc.
lif-cnn [13] 98.37
s-cw-a [22] 98.62
reg-l [27] 99.08
f-max [9] 99.65

∗ k-nn 97.11
∗ l-svm 99.10

F-MNIST
Method Acc.
log-reg [40] 84.00
rf-c [40] 87.70
svc [40] 89.98
cnn [34] 92.10

∗ k-nn 88.10
∗ l-svm 92.22

SVHN
Method Acc.
ssae [26] 89.70
c-km [26] 90.60
s-cw-a [22] 93.10
tma [21] 98.31

∗ k-nn 86.41
∗ l-svm 90.28

TABLE VI
RECOGNITION ACCURACY COMPARISON BETWEEN SOTA AND 1) K

NEAREST NEIGHBOR (k-nn) SEARCH AND 2) LINEAR SVM [12] (l-svm)
THAT USE THE SPARSIFYING NONLINEAR TRANSFORM (SNT)

REPRESENTATIONS FROM OUR MODEL ON EXTRACTED HOG [5] IMAGE
FEATURES. WE USE OUR ALGORITHM TO LEARN THE MODEL ON THE HOG

FEATURES. THEN WE GET THE SNT REPRESENTATIONS WITH
DIMENSIONALITY 9800 FOR THE RESPECTIVE TRAINING AND TEST SETS.
CONSIDERING THE OBTAINED RESULT FOR DATABASE SVHN, WE NOTE

THAT THE UNLABELED TRAINING DATA FROM THE RESPECTIVE DATABASE
WAS NOT USED DURING THE LEARNING OF THE CORRESPONDING MODEL.

VIII. CONCLUSION

This paper introduced a novel collaboration structured model
with minimum information loss, collaboration corrective and
discriminative priors for joint learning of multiple nonlinear
transforms. The model parameters were learned by addressing
an integrated marginal maximization that corresponds to
minimizing an unnormalized empirical log likelihood of the
model. An efficient solution was proposed by an iterative,
coordinate descend algorithm.

The preliminary results w.r.t. the introduced measure and the
recognition accuracy on the used databases showed promising
performance and advantages w.r.t. state-of-the-art methods.
A study on the recognition capabilities for other databases,
together with a study on a deep architecture where per single
layer we have nonlinear transform are left for future work.

APPENDIX A

Let y = yl,{c,k}, q = Alxc,k + cl,{c,k} and λ0 = λl,0.
Denote dd = τl,c1, ds = νc2 and s = τl,c1 � τl,c1, gd =
(sign(q+)�d+

d + sign(−q−)�d−d ), gs = (sign(q+)�d+
s +

sign(−q−)�d−s ) and note that per pair {τl,c1,νl,c2} we have
the following problem:

min
y

1

2
‖q−y‖22+λ0

(
gTd |y|−gTs |y|

)
+sT (y�y)+λ11

T |y|, (13)

that represents a projection problem with linear, quadratic and
sparsity constraints.

First Order Derivative The first order derivative w.r.t. y is:

y − q + λ0 (gd � sign(y)− gs � sign(y)) +

λ0y � s + λ1sign(y) = 0,
(14)

let y = |y| � sign(y), q = |q| � sign(q) and k = (1 + λ0s)
and assuming that sign(y) = sign(q), then we have |y| �k−
|q|+ λ0 (gd − gs) + λ11 = 0. Hadamard divide by left with
k we have that:

|y| − |q| � k + λ0 (gd − gs)� k + λ11� k = 0, (15)

since the magnitude might be only positive we have that |y| =
max(|q| � k− λ0 (gd − gs)� k− λ11� k,0).

Closed-Form Solution Assuming kT (y � y) ≥ 0 and(
gTd |y| − gTs |y|

)
≥ 0 then the closed-form solution is:

y = sign (q)�max (|q|−λ0 (gd−gs)−λ11,0)� k � (16)

APPENDIX B

B.1 Let all the variables be fixed and denote λl,0 = λ0, then
per τl,c1 we have the following problem:

min
τl,c1

1

2
‖τ t−1l,c1 − τl,c1‖22 + λ0

∑
c1

r(c1), (17)

where r(c1) = %(y|{c1,c2}, τl,c1) + ς(y|{c1,c2}, τl,c1). Let y =
τl,c1 and q = τ t−1l,c1 , denote gd = (sign(q+)�

∑
c1 y|+{c1,c2}+

sign(−q−)�
∑
c1 y|−{c1,c2}) and s =

∑
c1 y|{c1,c2}�y|{c1,c2},

then we have the following problem:

min
y

1

2
‖q− y‖22 + λ0g

T
d |y|+ sT (y � y), (18)

that is essentially equivalent to problem (13), but, without the
terms −λ0gTs |y| and λ11T |y|.

Closed-Form Solution Assuming kT (y � y) ≥ 0, then the
closed-form solution is:

y = sign (q)�max (|q|−λ0gd,0)� k, (19)

where similarly as in Appendix A, k = 1 + λ0s �

B.2 Let all the variables be fixed and denote λl,0 = λ0, then
per νl,c2 we have the following problem:

min
νl,c2

1

2
‖νt−1l,c2 − νl,c2‖22 + λ0

∑
c2

r(c2), (20)

where r(c2) = %(y|{c1,c2},νl,c2). Let y = νl,c2 and q =
νt−1l,c2 , denote gs = (sign(q+)�

∑
c2 y|+{c1,c2}+ sign(−q−)�∑

c2 y|−{c1,c2}) then we have the following problem:

min
y

1

2
‖q− y‖22 + λ0g

T
d |y|, (21)

that is essentially equivalent to problem (13), but, without the
terms −λ0gTd |y|, λ11T |y| and λ0sT (y � y).

Closed-Form Solution The closed-form solution is:

y = sign (q)�max (|q|−λ0gs,0) � (22)
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