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About Me ...

• Full professor TU Delft, the Netherlands.

• Fellow IEEE.

• Appointed member of the Royal Netherlands Academy of 
Arts and Sciences.

• >100 papers, 1100 citations, Hirsch factor: 30.

• Acquired over 30 M€ indirect research funding.

• >100 M.Sc. Students, ∼ 25 Ph.D students.

• Signal processing, content retrieval, privacy.

• Research department of 120 people in Signal

Processing, Pattern Recognition, Visualization, Man-
Machine Interaction.

• Application domains: Media, Telecom, Health.

• Scientific director Delft Institute for Research on ICT.

• Director of national COMMIT research program (100 M€).
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Do I need to convince you that Privacy on 
the Internet is an issue?

� No.   Skip next sheets / Go into sleep mode.

� Yes.  Pay attention to some illustrations.
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We are Becoming Increasingly Reliant on …
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Privacy of Sensitive Personal Information (1)
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Privacy of Sensitive Personal Information (2)
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Privacy of Sensitive Personal Information (3)
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Privacy of Sensitive Personal Information (4)

• Beyond the Internet
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Privacy versus Functionality

• Increasingly, the provision of desirable personalized services 
such as recommendation (books, navigation, health advices, …) 
require sensitive personal information.

• Without that personal information, the personalized service 
cannot work.

• What data, what privacy risks?
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Data and Privacy Risk for OSNs

How to protect your privacy sensitive data?

1. Privacy settings and awareness.

2. Law and regulations.

3. Technological solutions.
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Privacy versus Functionality

• Increasingly, the provision of desirable services such as 
recommendation (books, navigation, health advices, …) require 
sensitive personal information.

• Without that personal information, the service cannot work.

• What data, what privacy risks?

• Focus in this lecture is on …

• … privacy protection (PP) …

• … against the provider of the service …

• … guaranteed by technological (cryptographic) means.
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Example of a PP Recommender System (1)

User Movie recommender

(StarTrek, StarWars,...,Stargate) Type1=(Battlestar,...)

Type2=(Titanic,...)

Type3=(Saw,...)

...

TypeN=(Casablanca)

Find the best matchFind the best match

Type=1

Recs=(Blade Runner,...,Man from the Earth)
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Example of a PP Recommender System (2)

User Movie recommender

(StarTrek, StarWars,...,Stargate) Type1=(Battlestar,...)

Type2=(Titanic,...)

Type3=(Saw,...)

...

TypeN=(Casablanca)

Find the best matchFind the best match

Type=1

Recs=(Blade Runner,...,Man from the Earth)

([ASEGYJ], [GHSDTT],...,[USJRKM])

Type=[XYURT]

Recs=([WIJTIGJ],...,[KOLPWQ]) ?????
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Take Home Message

• Privacy preserving (secure) signal processing is a new branch on
the multimedia research tree.

• Solutions require truly interdisciplinary research …

• … and the results are of high societal relevance.

• Multimedia (signal processing) community faces a wealth of 
challenges.
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Content of the Lecture

• Introduction (done)

• Cryptography 2.0. (until 12:30 pm)

• Homomorphic cryptography.

• Secure multiparty computation.

• Secure face recognition. (start at 2pm)

• Secure recommender system.

• Challenges. (wrap up around 3:30 pm)
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The State of … Cryptography

• Crypto 1.0

• Communication between 2 (or more) parties.

• Security model: protect communication against an outsider, the 
malicious adversary.

• Private key cryptography*: DES, AES, …

• Public key cryptography*: RSA, Paillier, El Gamal, …

• Hashes: MD*, RIPEMD, SHA*

• Secure communication, signature schemes, integrity, …

• Crypto 2.0
• Communication and computing with a second (multi) party.

• Security model: protect against curious or malicious behavior of
certain parties.

• Homomorphic cryptosystems

• Secure multiparty computation
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Private versus Public Key Cryptosystem

m E[m] E[m] m

Private key cryptosystem

private

public

public

public

public
public

distribute

Public key cryptosystem

m E[m] E[m] m
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Crypto 2.0: The Best-known Example (1)

B(ob)
has € y

A(lice)
has € x

Who is the richest?

Is x > y   or   y > x

(a
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Crypto 2.0: The Best-known Example (2)

B(ob)
has € y

A(lice)
has € x

Trusted third party:
Compare x and y

A (or B) is the richest

(a
 T
T
P
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Crypto 2.0: The Best-known Example (3)

B(ob)
has € y

A(lice)
has € x

Prepare a boolean logic circuit

garble (encrypt) circuit
garble x

garble y

evaluate circuit

share result

ungarble result

?

( , ) 0

   [ ] versus [ ]

d x y x y T

E x E y

= − < =

(T
h
is is a

n
 e
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m
p
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u
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rty C
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m
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tio

n
 (M

P
C
))
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Homomorphic Encryption (1)

• Some public cryptosystems preserve some structure after 
encryption.

• Efficient way of evaluating linear functions on encrypted data 
(add, multiply).

• One form is additive homomorphism (Paillier, 1999):

• This allows for calculating additions and product with a constant 
C directly on encrypted data without decrypting the data first.

[ ]* [ ] [ ]

[ ] [ ]C

E a E b E a b

E a E Ca

= +

=
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Homomorphic Encryption (2)

• Example

• Note. If the numbers are not integers, scaling and rounding is 
necessary (fixed point data type).

1 2 3

1 2 3

1 2 3

2 9 5

1 2 3

2 9 5

[ ] [2 9 5 ]

[2 ]. [9 ]. [5 ]

[ ] . [ ] . [ ]

x x x

E E x x x

E x E x E x

E x E x E x

ω

ω

= + +

= + +

=

=
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Paillier Cryptosystem: Additive Homomorphic (1)

• Based on difficulty to factor a large number in primes

• Encryption of the plain text sum is the product of the two 
encrypted values.

public key

private key
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• Paillier:   E[m] = [m] = gm rn mod n2

• Properties:

• Semantic security. A computationally bounded adversary cannot 
derive meaningful information from observing plain text and cipher 
text.

• Random parameter r plays an important role because in signal 
processing inputs are usually of small range (8-16 bits).

• Example:

• [5] = 36 715 mod 225 =  99     ( 225 = 152 = (3 x 5)2 )

• [5] = 36 815 mod 225 =  126

• Cipher text is uniform over range (0, n2 - 1) as random number 
changes.

• In practice, p, q, n are 512, 1024 or more bits long.

• Observe and remember the data expansion.

Paillier Cryptosystem: Additive Homomorphic (2)
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RSA Cryptosystem: Multiplicative Homomorphic

• Based on difficulty to factor a large number in primes.

n   = p.q

d.e ≡ 1 mod (p-1)(q-1) (n, e)

(d)

E[m] = c = me mod n

D[c] = m = cd mod n

• [m1] x [m2] = m1
e m2

e mod n  = (m1 m2)
e mod n = [m1 x m2]

• Multiplicative homomorphic.

• Not semantically secure (no randomness factor).

public key

private key
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What Can We Do With This?

• Additive homomorphism

• This can be used for linear operations of the following kind:

� Inner products, projections, linear signal transformations (DCT).

[ ]* [ ] [ ]

[ ] [ ]C

E a E b E a b

E a E Ca

= +

=

[a] x [b] = [a+b]

[a]C = [Ca]
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What Can We Not Do With This?

• If both x and y are encrypted …

• … a fully algebraically homomorphic cryptosystem is needed.

• Solution exist (C. Gentry, 2009) but completely impractical.

• Even Paillier and RSA are computationally intense due to power 
raising operations.

• Also: Non-linear operations require secure MPC solutions.

addition

multiplication
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Blinding is Useful too

• Alice calculates the product of [a] and [b] to [a.b], but Bob has 
the secret key sk.

[a], [b], pk sk

A(lice) B(ob)

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

a a

b b

a a r a r

b b r b r

= + = ×

= + = ×

%

%

. ( ).( )
a b

b a a b

a b a r b r

ab ar br r r

= + +

= + + +

%%

[ ] [ ]a b%% decrypt

[ . ]a b%%

[ ] [ ] [ ] [ ] [ ] 1

.
~

.~.
−−−

×××=
ba

rr

rrbababa
ab

encrypt
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Secure Multiparty Computation (MPC)

• Procedures to compute a function f (x1,x2,...,xN) 
• Public function.

• Secret inputs.

• No one should see the inputs of the others.

• Joint result, known to one or many.

• Example: The “love” game.
• A(lice) and B(ob), do they like each other?

• Results:

• Both like each other, learn the input of the other (yes/no).

• If one likes the other, learn if the other agrees (yes/no).

• If one does not like the other, keep opinion of the other hidden.

• Note: this is the Boolean function:  Result = A and B
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The “Love” Game Protocol

Yes Yes

No No

No match

Match

Random circular rotation

A(lice) B(ob)
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Garbled Circuits for Two-party MPC

• Procedure to compute a function f (x1,x2) .

• Alice:

• Creates a Boolean circuit of the function f (a,b).

• Garbles the truth table of every gate

• Assign 2 keys for each input (usually called: input wire): (Ka0, 
Ka1) and (Kb0, Kb1).

• Shuffle (randomize) the order of the truth table rows.

• Send the key and the circuit to Bob.

• Bob:

• Get the circuit and input of Alice (key Ka0 or Ka1).

• Needs Oblivious Transfer (OT) to get correct key Kb0 or Kb1.

• Evaluate the circuit using his own inputs (key Kb0 or Kb1)

• Report outcome to Alice.
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Garbled Circuit AND Function

a b a∧b

0 0 0

0 1 0

1 0 0

1 1 1

a b a∧b

Ka0 Kb0 EKa0
(EKb0

(Kz0))

Ka0 Kb1 EKa0
(EKb1

(Kz0))

Ka1 Kb0 EKa1
(EKb0

(Kz0))

Ka1 Kb1 EKa1
(EKb1

(Kz1))

a

b
z = a∧b

R
a
n
d

o
m

 s
h
u
ffle
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Function: c2c1c0 = f(a1a0 , b1bo)

XORAND

a0b0

c0

XORAND

a1b1

AND

XOR

c1c2

T
h
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s 
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Function: c2c1c0 = f(a1a0 , b1bo)

XORAND

a0b0

c0

XORAND

a1b1

AND

XOR

c1c2

1

000

0 1 1
1 0 1

1 01

000

0 1 0
1 0 0

1 1

1

000

0 1 0
1 0 0

1 1

1

000

0 1 1
1 0 1

1 1
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Function: c2c1c0 = f(a1a0 , b1bo)

XORAND

ff0a2278
996eb104

234dd1a2
00de367a

c0

XORAND

fe27f772
67002ab0

88q4c87c
1bd33a39

AND

XOR

c1c2

92947aaf
52feba34
2309ddea
2ffacb67

234de67a
769ffab4
00fa2756
0016dedf

5065351f
afb46dc6
13affe68
67fef100

419dbc45
006ffe2a
99afbd75
0f035dffe

Kx0, Kx1

EKx0
(EKy0

(Kz0))

(32 bit keys)

T
h
is
 i
s 
th
e
 c
ir
cu

it
 t
h
a
t 
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e
 s
e
n
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Function: c2c1c0 = f(a1a0 , b1bo)

XORAND

ff0a2278
996eb104

234dd1a2
00de367a

c0

XORAND

fe27f772
67002ab0

88q4c87c
1bd33a39

AND

XOR

c1c2

92947aaf
52feba34
2309ddea
2ffacb67

234de67a
769ffab4
00fa2756
0016dedf

5889da3a

a8dbc23a

ff9946bc

5065351f
afb46dc6
13affe68
67fef100

419dbc45
006ffe2a
99afbd75
0f035dffe

E
va

lu
a
ti
o
n
 b
y 
B
o
b
 (
st
e
p
 1
)
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Function: c2c1c0 = f(a1a0 , b1bo)

XORAND

ff0a2278
996eb104

234dd1a2
00de367a

c0

XORAND

fe27f772
67002ab0

88q4c87c
1bd33a39

AND

XOR

c1c2

92947aaf
52feba34
2309ddea
2ffacb67

234de67a
769ffab4
00fa2756
0016dedf

5889da3a

a8dbc23a

ff9946bc

5065351f
afb46dc6
13affe68
67fef100

419dbc45
006ffe2a
99afbd75
0f035dffe ffe34cd0

E
va

lu
a
ti
o
n
 b
y 
B
o
b
 (
st
e
p
 2
)
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Oblivious Transfer (One-out-of-Two)

• Bob needs the key Kb0 or Kb1 corresponding to his input 0/1.

• Cannot plainly ask Alice, or Alice would know input of Bob.

• Need oblivious transfer (in this case: one-out-of-two).

• OT: Procedure to let Alice select one value (key in this case) out 
of two without knowing which one was selected.

A(lice)   Kb0, Kb1 B(ob) }1,0{=σ

RSA keys (n, e, d)
random values R0, R1

random value k

nkRv e mod)( += σ

R0, R1

v

44 344 21
randomor  

111

00

mod)(
~

mod)(
~

k

d
b

d
bo

nRvKm

nRvKm

−+=

−+=

10

~
,

~ mm kmK b −= σσ

~
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Oblivious Transfer and Garbled Circuits

• Garbled circuits are relatively efficient.

• But the OT requires:

• for each wire (bit) ...

• key generation ...

• public key operations (RSA encryption and decryption) ...

• data transmission ...

• Even with precomputation (e.g. keys, random numbers) this is 
fairly computationally expensive.

• Hybrid approaches:

• Linear � homomorphism.

• Non-linear � garbled circuits.
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Content of the Lecture

• Introduction (done)

• Cryptography 2.0. (done)

• Homomorphic cryptography.

• Secure multiparty computation.

• Secure face recognition. (start at 2pm)

• Secure recommender system.

• Challenges. (wrap up around 3:30 pm)
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Face Recognition: Blessing or Threat?
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A ‘Normal’ Face Recognition System

Query (Alice) Face database and recognition (Bob)
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Desired Secure Version

Needs privacy preserving signal processing

Query (Alice) Face database and recognition (Bob)

private 
decryption key
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Face Recognition using Eigenfaces

?

Query face x Projected face

…

..

..

..

(1)

ie
(2)

ie
(3)

ie

(9)

ie

( ) ( )

1

K
k k

k

x eω
=

≈∑

(1) 8ω =

(2) 3ω =

(9) 1ω =

Projection

The ω-values are the eigenvalues, weights, or feature values in the database
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Work load in SFR: Linear Operations

( ) ( ) ( )

1

N
k k k

i i
i

e xω ω
=

= ⇔ =∑

(1) (2) ( )( , ,..., )Kω ω ω

Query (Alice) Face database and recognition (Bob)
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Linear Operations on Encrypted Data (1)

• Exploit homomorphism for these additive operation (Paillier)

• This allows the calculation of features ω(k) -- the projection on 
eigenvectors e (k) -- on encrypted images x: 

• Allows for calculating encrypted features directly on encrypted 
image pixels xi .

[a] x [b] = [a+b]

[a]C = [C a]

[ ] [ ]
)(

1

)(

1

)()(

k
ieN

i
i

k
N

i
i

k
i

k xxe ∏∑
==

=⇔= ωω
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But …

1. Public key encryption (8 bit pixel � 1024 bit encrypted value)

• Counteract by stacking multiple pixels before encryption

2. Only integer values of e (k) and images x.

• Counteract by scaling (e.g. factor 1000) to work with fixed point 
data type instead of rational numbers).

3. Matching is a non-linear operation.

• Euclidean distance calculation.

• Find the “closest” face, and determine if it is “close” enough.
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Packing of Pixel Values

• Naïve approach: pixel-by-pixel

• Pixel packing

8 bits

encrypt

1024 bits

8 bits

1024 bits

encrypt

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits
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Secure Version of Face Recognition

(1) (2) ( )( , ,..., )Kω ω ω

(1) (2) ( )([ ],[ ],...,[ ])Kω ω ω

[ ] [ ]
)(

1

)(

k
ieN

i
i

k x∏
=

=ω
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Calculating (Encrypted) Distances (1)

• Euclidean distance between

• Feature vector (encrypted) for input image: 

• And feature vector from the database

• Let us start with the case K=1 …

(1) (2) ( )( , ,..., )Kω ω ωΩ =

(1) (2) ( )[ ] ([ ],[ ],...,[ ])Kω ω ωΩ =
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Calculating (Encrypted) Distances (2)

• In case K=1 (remember, only        is encrypted).

• Easy: Database server (Bob) uses public key of Alice to 
encrypt     .

• Easy: Bob raised encrypted feature value        to 

power         .

• Harder: Multiplication of two encrypted numbers by Bob. 
Remember the protocol based on blinding?

[ ] [ ] [ ]

[ ][ ] [ ]222

2222

2222

)(

2)(

2)(

ωωω

ωωωωωω

ωωωωωω

ω−
=

+−=−=Ω−Ω

+−=−=Ω−Ω

[ ]2ω
2ω

[ ] ω
ω

2−

ω2−

[ ]ω

[ ]2ω
28

Blinding is Useful too

• Alice calculates the product of [a] and [b] to [a.b], but Bob has 
the secret key sk.

[a], [b], pk sk

A(lice) B(ob)

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

a a

b b

a a r a r

b b r b r

= + = ×

= + = ×

%

%

. ( ).( )
a b

b a a b

a b a r b r

ab ar br r r

= + +

= + + +

%%

[ . ]a b%%

[ ] [ ]a b%%

[ ] [ ] [ ] [ ] [ ] 1

.
~

.~.
−−−

×××=
ba

rr

rrbababa
ab

decrypt

encrypt

[ ]ω



5252

Calculating (Encrypted) Distances (3)

• Euclidean distance between

• Feature vector (encrypted) for input image: 

• And feature vector from the database

(1) (2) ( )( , ,..., )Kω ω ωΩ =

(1) (2) ( )[ ] ([ ],[ ],...,[ ])Kω ω ωΩ =

( )

2 (1) (1) 2 (2) (2) 2 ( ) ( ) 2

(1) 2 (2) 2 ( ) 2

(1) (1) (2) (2) ( ) ( )

(1) 2 (2) 2 ( ) 2

only encrypted values  available => need interactive pr

|| || ( ) ( ) ... ( )

( ) ( ) ... ( )

2 2 ... 2

( ) ( ) ... ( )
k

K K

K

K K

K

ω

ω ω ω ω ω ω

ω ω ω

ω ω ω ω ω ω

ω ω ω

Ω − Ω = − + − + + −

= + + +

− − − −

+ + + +

otocol

1444442444443
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Calculating (Encrypted) Distances (4)

Server:

( )22 ( ) 2 ( ) ( ) 2

1 1 1

easy easy above protocol

|| || ( ) . [ ] . [( ) ]
i

K KK
i i i

i i i

ω
ω ω ω

−

= = =

    
 Ω − Ω =      

     
∑ ∏ ∏
14243 1442443 1442443

• For the calculation of the distance under encryption we find:

Database server (Bob)Query (Alice)
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Find the Minimum of the Encrypted Distances

• Several encrypted values:

• Find the minimum.

• But database server (Bob) should not know which feature vectior
(person) yields the minimum.

• Much like the Millionaire Problem.

• Use garbled circuit to solve.

(see next slide, no details).

• Use dedicated protocol.

(details next).

• Based on comparing pairs, expand to a binary tree comparison.

• Secure Face Recognition solution becomes hybrid.
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Find the Minimum of the Encrypted Distances

• A garbled circuit require several MBytes of communication for 
320 images of size 112 x 90

Circuit: 32ML x 128 bits = 32 . 320 . 50 . 128 = 6 MByte
Oblivious transfer: 5ML.1024 = 10 MByte

But tricks such as elliptic, #entries per table less, 
reduced size of garbled circuit with factor 2-3, 
oblivious transfer factor of 10
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Comparison Protocol: a < b ?

• Setting:

• Alice (query) has the private decryption key.

• Bob (database server) has [a] and [b] (l bit each).

A(lice), sk B(ob), [a] [b]

1]].[].[2[]2[][ −=−+= babaz ll

Look at the MSB: a>b � “1”
a<b � “0’

{
right toshift onlybit"sign"

2)2mod( -ll

44 344 21
zzMSB −=



Comparison Protocol: a < b ?

• Example A
• a = 100 (4)

• b = 101 (5)

• l = 3

• z = 2l + a – b = 8 + 4 – 5 = 7 = 0111

• MSB = ( z – z mod 2l)2-l = (7 – 7mod 8)2-3 = (0000) 2-3 = 0

• Example B
• a = 101 (5)

• b = 100 (4)

• l = 3

• z = 2l + a – b = 8 + 5 – 5 = 9 = 1001

• MSB = ( z – z mod 2l)2-l = (9 – 9mod 8) 2-3 = (1000) 2-3 = 1
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Comparison Protocol: a < b ?

• Setting:

• Alice (query) has the private decryption key.

• Bob (database server) has [a] and [b] (l bit each).

A(lice), sk B(ob), [a] [b]

1]].[].[2[]2[][ −=−+= babaz ll

{
right toshift onlybit"sign"

2)2mod( -ll

44 344 21
zzMSB −=

Cannot be done, only in encrypted form available.
Alice can decrypt, but should not know z.
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Comparison Protocol: a < b ? (Details I)

• Setting:

• Alice (query) has the private decryption key.

• Bob (database server) has [a] and [b] (l bit each).

A(lice), sk B(ob), [a] [b]

{
pk uses B 

1

][].[][][

]].[].[2[]2[][

rzrzc

babaz

=+=

=−+= −ll

[c]

Decrypt [c]
encrypt each bit ci ][][],[ 110 −lccc L

Property of πi (i=0…N-1): if contains zero, than r >c    � result of b <a 

Compare c with r. 
Find first bit ri =1 and ci=0, 
while all higher up bits are identical.
Result is still encrypted πi .
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Comparison Protocol: a < b ? (Details II)

• Setting:

• Alice (query) has the private decryption key.

• Bob (database server) has [a] and [b] (l bit each).

A(lice), sk B(ob), [a] [b]

{
pk uses B 

1

][].[][][

]].[].[2[]2[][

rzrzc

babaz

=+=

=−+= −ll

[c]

Decrypt [c]
encrypt each bit ci ][][],[ 110 −lccc L

[ ]

∏

∑

+=

−

+=

=









⊕+−+=

N

ij

r

jii

N

ij
jjiii

jcrc

rcrc

1

31

1

][.]].[].[1[

31π

Shuffle, multiplicative blinding [πi]
[πi]
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Example (Details III)

A(lice), c=01110 B(ob), r=01010

Encrypt each bit ci

]2[]1001[][

]2[]1111[][

]0[]0101[][

]1[]0111[][

]1[]0001[][

4

3

2

1

0

=+−+=

=+−+=

=+−+=

=+−+=

=+−+=

π

π

π

π

π

Shuffle, multiplicative blinding [πi]Decrypt each πi

Zero exists: k=0
Otherwise:   k=1 

Encrypt k

[πi]

[ci]

[k]
Interpret “k” (smaller vs larger?)

(Example of comparison protocol, variations exist)
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Evaluation

• Query image is encrypted pixel-by-pixel.

• Recognition algorithm is run by server on encrypted image.

• Feature calculation ‘easy’ thanks to homomorphic properties.

• Additional tweaking: scaling, packing, precomputation, DGK 
encryption for small message space.

• Interactive protocols required for:

• Distance calculation (square of encrypted number)

• Finding minimum of distances (and compare to threshold)

• Timing:

• Integer arithmetic

• 400 images (112x92): 18 seconds. 

• Hybrid approach

• 1000 images: 13 seconds.
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Sidetrack a Little Bit …

• Feature vectors are computed via a linear transform.

• Another well-known linear transform is the Discrete Fourier 
Transform.

Frequency
analysis

Computer
features

Classifier
x(n)

Frequency
analysis

Computer
features

Classifier
x(n)

Encrypt

Carry out on encrypted samples?
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Popular Transform in DSP

• Fourier transform

• What if … the signal samples are encrypted under a 
homomorphic crypto system?

• Straightforward yet naïve:
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Radix-2 Implementation

• DFT is usually implemented as Fast Fourier Transform (FFT).

• How does this work out for encrypted signals?

• Need to scale the powers W nk � truncation and scaling

• Finite field should not disrupt the algebraic properties needed:
concatenated scaling leads to larger modulus, or modulus limits scaling

• DFT and FFT need different truncation and scaling steps
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Given Accuracy, What DFT/FFT Size Fits?
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Given Accuracy, What is Complexity?
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Maybe Surprising ….

• The maximum allowable DFT size depends on 

• the modulus of the cryptosystem,

• the DFT/FFT implementation,

• the required precision.

• There is a tradeoff between feasible but less efficient 

implementations and efficient but sometimes unfeasible ones.

• If the number of DFT points M is very large (e.g. 

multidimensional signals), only DFT may be feasible 

• This is counter intuitive.

• Huge implications for computational complexity.



6969

Content of the Lecture

• Introduction (done)

• Cryptography 2.0. (done)

• Homomorphic cryptography.

• Secure multiparty computation.

• Secure face recognition. (done)

• Secure recommender system.

• Challenges. (wrap up around 3:30 pm)
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Recommender Systems

Server

p1 Recommendations
User data

public

private

User 1

Uses privacy-sensitive data:
• name,
• age,
• gender,
• birth date,
• likes-dislikes (food, movie, cities),
• previous buys, sites visited, ratings, 

…
to carry out clustering, collaborative 

filtering, recommendation, …
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Recommender Systems

User 2

User 3

User N

…
…
…
…

p1

p2

p3

pN

Uses privacy-sensitive data:
• name,
• age,
• gender,
• birth date,
• likes-dislikes (food, movie, cities),
• previous buys, sites visited, ratings, 

…
to carry out clustering, collaborative 

filtering, recommendation, …

Recommendations

public

public

public

public

private

private

private

private

User data

User 1

Server
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Pattern Recognition 101; N users in K groups

Representation of one user

Dimension R=2, #users N = 100
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Pattern Recognition 101; 100 users in 3 groups

K-Means Algorithm

Dimension R=2, #users N = 100, #centroids K=3
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K-Means Algorithm 

• The server carries out the clustering procedure:

1. Start with arbitrary cluster centers (centroids).

2. Assign users (user preferences vectors) to clusters based on the
provided data.

3. Recalculate cluster centers.

4. Goto 2 and repeat until convergence.

• Note that:

• Step 2 is similar to the last steps of the secure face recognition 
method

• Namely:

• A server needs to find the minimum distance.

• In a secure version the user’s vector is encrypted.
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Secure K-Means Algorithm

• Assume the user provides only encrypted vectors to the server.

• Server should only know cluster centers (centroids) cj , but 

• not the input of individual users pi ,

• not the cluster to which an individual user belongs.

• Users should only know their own data pi and (eventually) their 
classification, but 

• not the cluster centers cj .

• (In a more extended version, also the cluster will not know the 
centroids).
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Pattern Recognition 101; 100 users in 3 groups

K-Means Algorithm

Dij

pi

cj

Dimension R=2, #users N = 100 (i ), #centroids K=3 (j )
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Secure Clustering: Compute Distances (1)

• Each user i calculates (if plaintext vectors):

= = = =

= − = + − +∑ ∑ ∑ ∑
14243 1442443 14243

,

2 2 2 2

, , , , , , ,
1 1 1 1

 provided by server available to user encrypted

( ) 2

i n

R R R R

i j j n i n j n i n j n i n
n n n n

c

D c p c p c p

njc ,

(n runs over elements in the vector, 1 … R)
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Secure Clustering: Compute Distances (2)

• Each user i calculates (if plaintext vectors):

• When server data (centroid) cj is encrypted, user i calculates:
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(computed by the SP)         (homomorphism)          (computed by the user)
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K-Means Algorithm

• Centroids are encrypted 
by server.

• Each user can calculate 
its (encrypted) distance 
to each (encrypted) 
centroid, [Dij

2] .
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K-Means Algorithm 

• The server carries out the clustering procedure:

1. Start with arbitrary cluster centers (centroids).

2. Assign users (user preferences vectors) to clusters based on the
provided data.

3. Recalculate cluster centers.

4. Goto 2 and repeat until convergence.

• Note that:

• Step 2 is similar to the last steps of the secure face recognition 
method

• Namely:

• A server needs to find the minimum distance.

• In a secure version the user’s vector is encrypted.

• To do:

1. Find minimum distance: result is encrypted.

2. Update the centroids.
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Find (Position of) the Minimum 

• Each user i has

and calculates

• Simplify                     and run repeatedly in binary tree fashion.

• Similar to secure face recognition, use same algorithm.
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Update the Centroids

• Per user pi , server find cluster cj with minimum distance

• This information is given in encrypted form:

• Indicated by encrypted vector xi:

{
closest centroid

[ ] [0],[0],    ... [1] ,...[0],[0]i

 
=   
 

x

Dimension K
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Update the Centroids

• Per user pi , server find cluster cj with minimum distance

• This information is given in encrypted form:

• Indicated by encrypted vector xi:

• Update the centroids:

{
closest centroid

[ ] [0],[0],    ... [1] ,...[0],[0]i

 
=   
 

x

( ) ∑=

closest  as  centroid
have who users Those
,

closest as  centroid
have who users#,

1

j

ni
j

nj pc (for all j =1…K)
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Update the Centroids

• Per user pi , server find cluster cj with minimum distance

• This information is given in encrypted form:

• Indicated by encrypted 1xK vector xi:

• Update the centroids:

{
closest centroid

[ ] [0],[0],    ... [1] ,...[0],[0]i
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Update the Centroids (1)

• Per user pi , server find cluster cj with minimum distance

• This information is given in encrypted form:

• Indicated by encrypted vector xi:

• Update the centroids:

{
closest centroid

[ ] [0],[0],    ... [1] ,...[0],[0]i

 
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Update the Centroids (2)

• Each user calculates         .

• How to combine via product: 

• User cannot do this because it has only its own

• Server can but undesirable because it can decrypt individual  

• Solutions:

• Collaborative protocol amongst all users using blinding.

• Involve semi-trusted computing party.

• The latter also makes it possible to deny server access to 
centroids (i.e. server sees only encrypted centroids).

• Protocols are not very efficient.

• There is room for improvement.
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Improvements …

• More restricted access by the server:

• Centroids are unknown.

• The number of users in each cluster is unknown.

• By introducing a new player: Semi-trusted Third Party (STTP)

• Trusted with computations.

• Not trusted with the data.

• Creates the key pairs.

• Overtakes the responsibility of users for data processing.

• STTP is not a trusted third party (TTP) since it has no access to 
the data.



Extension with a STTP (1)
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STTP

Server

User A

User B

User N

Public key

Public key

Public key

Public key



Extension with a STTP (2)
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STTP

Server

User A

User B

User N

Encrypt
ed user

 data A

Encrypted user data B

Encrypted user data N



Extension with a STTP (3)
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STTP

Server

User A

User B

User N

Cryptographic Protocol 
for the 

K-means algorithm

• Initial centroid generation (random)
• Distance computation with only encrypted data
• Minimum distance computation 
• Centroid update procedure 



Extension with a STTP (4)
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STTP

Server

User A

User B

User N

Encrypt
ed Res

ult for u
ser A

Encrypted Result for user B

Encrypted Result for user N



Extension with a STTP (5)
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STTP

Server

User A

User B

User N

Cryptographic Protocol 
for obtaining

the result (Secure Decryption) 
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Evaluation (1)

• User preference data is encrypted value-by-value

• Clustering algorithm is run by server on encrypted data

• Distance calculation ‘easy’ thanks to homomorphic properties 

• Interactive protocols required for:

• Finding minimum of distances 

• Updating centroids

• 1000 users, K=10 clusters, 10 iterations, 12-dimensional space

• Timing: 

• Several minutes (versus few seconds on plaintext) 

• Communication costs:

• 480 kBytes (each user)



Evaluation (2)

• More privacy preserving with STTP

• Initial centroids locations are random and jointly created

• Centroids and number of users in each cluster are unknown

• Cryptographic protocols are different

• Exponentiations are now Secure Multiplication Protocols

• Working with encrypted data all the time (no public data)

• Dedicated algorithm for updating centroids without division

• Data packing where possible

• Efficiency

• Less computation for the users

• More computation for the STTP and the server

• But scalable because they are computationally powerful

93
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Content of the Lecture

• Introduction (done)

• Cryptography 2.0. (done)

• Homomorphic cryptography.

• Secure multiparty computation.

• Secure face recognition. (done)

• Secure recommender system. (done)

• Challenges. (wrap up around 3:30 pm)
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Challenges (1)

• In an increasing number of applications, secure signal processing is 
needed.

• Some (linear ops, distances) but not all signal processing can be 
done efficiently using homomorphic operations.

• For other operations we need

• interactive protocols,

• garbled circuits.

• Data expansion: stacking data into longer vectors.

• Additional players (such as STTP) can simplify the protocols considerably.
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Challenges (2)

• Security model should be reconsidered.

• Semi-honest is too simple.

• Active adversary model is too complex.

• Exploit signal processing properties for efficient secure 
implementations.

• Reformulating or approximating signal processing algorithms so 
that they translate into more efficient secure versions.

• Signal processing is “inexact” (noise is tolerated). How to exploit 
in order to make crypto protocols more efficient?


